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PREFACE

My purpose in writing this booklet is to introduce you to a fascinating
topic: the properties of continued fractions. I hope that you wil! not
find difficult this informal presentation of a topic that I find most in-
teresting. It is not meant to be difficult. These ideas are usually
presented in books dealing with the theory of numbers, and the discus-
sions and proofs found in these books are usually written for college
students of mathematics. However, I feel that the intellectually curious
high school student should have an opportunity to study a presentation
of continued fractions written especially for him. Through a study of
continued fractions you should gain increased insight into those proper-
ties of our number systems which are being emphasized today in modern
courses in mathematics.

CuarLEs G. MooRE
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FOREWORD

Sihce the very appearance of a continued fraction will probably be
new to you, it will not seem obvious what results should be expected
from a particular discussion. Thus you have here an opportunity to
investigate mathematical situations in which creative thinking is called
for and is rewarded. I hope you will discover in your investigation of
continued fractions many properties that are surprising and exciting.
For this reason I have placed some of the more lengthy proofs at the
end of the booklet. You may study them after you have become familiar
with the property with which the proof is concerned. You should not
feel that the proofs which are included in the text are placed there ex-
clusively for the purpose of proving one particular point. One of my
principal purposes in presenting the proofs is to help you see new rela-
tionships between bits of mathematics with which you are already famil-
iar. Exercises have been included which have been designed for the
purpose of helping you appreciate more fully the properties under in-
vestigation. Answers to all of the exercises will be found in Appendix B.
Historical notes accompany certain discussions to help give you a knowl-
edge of the men who first worked with continued fractions.

I believe that you will find continued fractions fun to work with. It
is toward this end that I have used throughout this booklet the more
eye-catching elementary form for writing continued fractions instead of
adapting oze of the more concise notations usually found in books con-
cerned with number theory.




CHAPTER 1

EXPANSION OF
RATIONAL NUMBERS
INTO CONTINUED
FRACTIONS

SIMPLE CONTINUED FRACTIONS

. . . . ' r.
The continued fraction corresponding to a rational number S isan
expression of the form:

; 1 128 1
s=at 1 Ex. g7 =3+ 1

az + i 2 + i
as + 1 5+ —
a + e — 1+§

an

In this expression for g, all of the a’s are positive integers with the

exception of a; which may be negative. These a’s are called the terms

of the continued fraction. The terms of the continued fraction for 332

are the numbers 3, 2, 5, 1, and 2. The continued fraction for 128 can

be obtained as follows:

......




2 CONTINUED FRACTIONS

7" Ak Sak o
17 17 17
3
34—t —=3+—17— =3+ L
243 2+ 2+ i
5+§ 5+ 3 S+ —
2 144
2 2

In this booklet we will be dealing with simple continued fractions only;
i.e., those where all of the numerators after a, are 1. If the numerator of
the given fraction is smaller than the denominator, then a, is 0.

3

Ex. 3-0+3 1

=0+ —
2+3

0+

ﬂ
OOI\!|H

Exercise Set 1
Expand the following rational numbers into continued fractions.

75 29 25 13 79 50 1363
lo ﬁ 2. "§" 30 ﬁ 40 i"g' 50 '5'6 60 -7_9' 70 —422"
To evaluate a given continued fraction we may begin at the end and
“work our way back up.”

Ex. 14 ll_=1+__—11 =14 14=
2 4+ —— 2+ ——— 2 + =
341 13 B
4 4
1 13 43
I+30=1*3%" 3

13

Exercise Set 2.

Evaluate the following continued fractions.

. 2'°‘*‘;11 3. 1+ L
1+ ——— 6+ — 24—
2+3 t+3

1. 14

. !




EXPANSION OF RATIONAL NUMBERS 3

If the given rational number is negative, then it is handled as the
following example illustrates:

2
1 ..13":___—2+.g.—.—2+—;-=-2+—-1—z=—2+;l=
s 9 144 14+ -1
} 5 5 5
7
24—
1+ —
1+

{ Note: —2 was selected for a, because —2 is the largest integer which
! is less than —-33,

Exercise Set 3

Expand the following rational numbers into simple continued frac-
tions.

2 2B 51

L - 13 ~17

Historical Note on Continved Fractions

Continued fractions were first investigated ™ i'ietro Cataldi.® He
was born in Bologna, Italy, in 1548. ¢ ..x.di wus a mathematies
teacher, and his primary mathematical interest was in perfect numbers.
A perfect number is one which is the sum of its divisors (not counting the
{ number itself as a divisor). For example, 28 is a perfect number because:
X ” the divisorsof 28 are 1, 2,4, 7,and 14;and 1 + 2 4+ 4 + 7 4 14 = 28,
' Perhaps you can find more numbers w1th this property. In the year
, 1613, Cataldi found approximations for the square roots of numbers by

using continued fractions, but he did not make a detailed investigation 1
of continued fractions.? '
Leonhard Euler, who was an 18th century Swiss mathematlclan, first
used the expression fractio continua as a name for continued fractions.
The German word for continued fractions is kettenbriche (chain frac-
tions). This name has only been in use since the beginning of the 19th
century.?
1 Eaves, Howard. An Introductwn to the History of Mathematics, New York: Rine-

hart and Co., 1953. ﬁ . 225-26.
2 Fink, Karl. A Brief Hastory of Mathematics, London: The Open Court Publishing

v s 9 .

Co., 1910. p. 131.
’Ilnd, p. 132.

e e e W B b
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4 CONTINUED FRACTIONS

TERMINATING CONTINUED FRACTIONS

All of the continued fractions that we have obtained by expanding
rational numbers have come to an end. Would the continued fraction
of every rational number terminate? Let us agsain exe:;nine the process

of expanding 4%. First we divide 128 by 37: 37@. Note that the
1
17
remainder, 17, must be smaller than 24; for if it is not, then 3 is too small
a number for the quotient. Now there is only a limited number of

positive integers less than 37. The next division involved in the ex-
2

pansion is as follows: 17)37. What must be true of the remainder, 3?
34

3

This remainder, of course, must be less than 17, which is less than 37.
5

The next division in the expansion is 3)_}7‘;', and the remainder, this time,
2

must be a positive integer less than 3. The remainders form a decreasing

sequence of positive integers; i.e., 17, 3, 2, - - - ; and so we must even-

tually get & remainder of zero; and at this point the expansion process is

terminated. Continued fractions of this type are called terminating

continued fram'om.

THEOREM 1. Every rational number can be ezpanded mto a terminat-
tng continued fraction.

Perhaps you would like to write a proof of Theorem 1. Proof No 1
in Chapter 12 gives a proof of this theorem.

Also as a result of your pra,ctxce with’ the exercises m Set 2 you may
conclude that the following is true '

TuxorEM 2. Every terminating contmued fractzon can be wrilten
6sa ratumal number '

No proof of Theorem 2 wrll be given.
Could it be posmble for a given rational number to be represented by
more than one continued fraction? That this is not possible seems rather
obvious when one ¢onsiders our discussion of the remainders mvolved
in the expansion of the rational number 5. However; the proof that
rational numbers cannot be represented by more than one contmued
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EXPANSION OF RATIONAL NUMBERS 5

fraction should be interesting, in that the proof makes use of concepts
that are already familiar to you.

DeriNiion: We shall say that iwo simple continued fractions
are equal if and only if their corresponding lerms are equal.

THEOREM 3. Every rational number can be represented by only one
simple continued fraction.

Proof. Suppose that

1 1

o + 1 and a'y +
a.+a‘+.“ 1 a.+a,'+.“ 1
+;"‘ +;',:

1

are both continued fractions that represent the rational number ;

Then we have

1 1

§-a1+ 1 = a’y + ;
“tat . “rt T
+'&: +;T‘.

1

Now a, is the largest integer less than ;, and a'; is also the largest integer
less than E, s0 a; = a’y. We now have§ - - ;- — a'y. Let us set

; - = ?, ?— is less than 1 because a, is the largest integer less than -;.
| 1

1 1

1
P ) 1 = 1

“tax .., “taTs
+-a_. +;r."

The reciprocal of a positive number less than 1 is greater than 1; there-
fore % is greater than 1. Since it is also true that if two non-zsero num-
bers are equal, their reciprocals are equal; we can write:

ﬂ-a’+a‘+k l l

L]

. -a’.+a,‘+.” 1
+1 + o

’
a. a.




6 CONTINUED FRACTIONS

Again, ay is the largest integer less than ;i, and a's is also the greatest

integer less than ;—:; therefore, a3 = a’s. The same reasoning can be

used to show that a; = a’s. Therefore the continued fractions

o + 1 1 and o'y + 1

¢a+a'+“

1

a's + as +

g U4

which we assumed to represent the number -E must be equal by our

definition of equality. We conclude that evdry rational number can
be represented in only one way as a simple continued fraction.




CHAPTER 2

CONVERGENTS

DEFINITION OF CONVERGENTS

If any of the terms are dropped from the end of a continued fraction,
the rational number which is represented by the part retained is called
a convergent. For the number

smat 1

we may write:

the first convergentis C, = a,,

the second convergent is C; = a; + al."

the third convergent is C; = a; 4 1 1

as-l"a;

etc.
128 1

FOI‘T7-=3+ 1 ?




8 CONTINUED FRACTIONS

we may write: C, =3 -3
1 7
G=3+3 "3
Gassl, -8
2+3
Com 8+ — '%‘g
2+ ——
: 5+.l.
Cy= 3 + 11 -13";8.
2+__l—
5+ ——
1 l+§
Exercise Set 4
F Find all of the convergents for the following continued fractions.
| 1.2+ s+ —1 33+ —
l+——l 4+———l 2+————l
2+ — 3+3 t+—
l+§ 6+7

We now seek a formula which will enable us to evaluate more rapidly

the convergents of a continued fraction. Let C, represent the nth

| convergent. Let r, and s, represent respectively the numerator and
the denominator of C,.

C: =aqa;807m = a,and 8 = 1,

Cs=a:+-¢%’--%—l;sorg-axag+l,anda-a,.
1 as
Grat—g=atmri~"Vam+i”
o + —
as as

moaas + a1+ @ _ aan + 1) + 6
asas + 1 asas + 1

Note: aa + 1= rs, m =, Qs = 8, 1 =g




CONVERGENTS 9

Substituting, we have

ry = aqry + 1y

C, = +n
3 8 = ayss + &.

iving:
aysy + & giving

Ry a similar substitution, we can get

Ty = aqyy 4+ 1y

Luntn
8 = Q48 + 8.

iving:
a8 + & giving

We seem to have a pattern evolving, and we find after studying the
expressions for C; and C, that the formula for C, seems to be
Tn - AnT'n-1 + ru—l.

8n Ap8n—1 + 852

If the formula for C, is to involve ra_i, -1, 8s—-1, and 8,3, Wwe must
decide what values to assign to ro, r—,, 8, and s_;. We have seen that
the formulas are valid forn = 3 and for n = 4. Are they true forn = 2
and for n = 1? The formula states ry = asr, 4+ ro. We know r; = ayas + 1,
and that n, = a;. Therefore our formula is applicable to ry, if we de-
fine r; to be 1. The formula states s; = a8, + 8. We know 8 = q;,
and 8 = 1. Therefore the formula will be applicable to 8, if we define
8 to be 0. The formula states r, = a)ro + r_,. We know r, = a,, and
ro = 1. Therefore the formula will be valid for r,, if we define r-, to
be 0. Again we look at the formula and note that s, = a8 + s.;.
Now since we have 8, = 1 and 8, = 0, the formula will further be valid
for &, if we define s_, to be 1. We now adopt the following definitions:

ry =0, &y =1, ro = 1, and s = 0.

Our formulas are true for n = 1, 2, 3, and 4. This suggests a proof
by mathematical induction. We must show that when the formulas
are true for any integer m they are also true for m 4+ 1. For the comple-
tion of the proof, see Proof No. 2 in Chapter 12.

PRACTICE IN FINDING THE CONVERGENTS OF A CONTINUED FRACTION,
USING THE FORMULAS FOR r, AND s,

ExampLE. To find the convergents for

2+

1
4+ —li
| | 8 + 3
first, set up a table as shown in Table I.

it




10 CONTINUED FRACTIONS
Tamx 1
n |—1(0{1|2|3|4]|5
Qn 2(2(4(8]2
Ta
8a

Next, fill in the table forr_y = 0, ro = 1, s_; = 1, and 8, =0, as defined.
You always start by filling the n = —1 and n = 0 columns for r and s
as shown in Tables II and III.

TasLz 11 Taswz 111
n -110]1]213{4,5 n |—-110]1] 2| 3 4 b
A G 2|12 4 8 2
Tn 0|1 T 0[1]2]5|22]181 384
8a 110 8. 1{0{1]2| 9| 74157
f 1
/]
i /
n_ahtra 21+40_2 __~ /
& 18 + 8.1 2.0 + 1 1 ,/
//

>

n_an+rn_22+1_ 5 -~
& an+s 2214+0 2

ete.

With a little practice you will see that a convergent table can be
filled in very rapidly. The last convergent must be equal to the rational
number the continued fraction represents. This gives you a very good
check on your arithmetic. '

Exercise Set 5 '

Make convergent tables for the following fractions.

25 17 37 43 19 151 133 o 119
l.ﬁ 2.-1—é 3."1_6 4.'i"§ 502—3 6--2—4— 7.‘7?,3 8-—8'2'

Historical Note on Convergents of Continved Fractions

The first mathematician to investigate methods for calculating the
convergents of a continued fraction was Daniel Schwenter. Schwenter
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CONVERGENTS 11

did this work in 1625.4 Schwenter, like Cataldi, was interested in perfect
numbers® The formulas that we have just developed were first de-
veloped by John Wallis*: In 1650, Wallis found that

x _ 2:244.6-68...

2" 1835577...

Lord Brounker’ rewrote this expression as the following continued
fraction:

x 12
1=t 3

2 + =
2+ 5

Now let us examine a particular convergent table. For example, the
convergent table for %! is as shown in Table IV.

Taswz IV
n |-1]0]1]2|3]| 4] 5 Q_
a, 211 1| 4] 3
T ol1]2]3]8)11]52,]167
| 8 l}|50!|E 1;|E l;IE3E|E 4E|519’|E 61

Note, for example, the differences in the various crisscross products
as they are indicated in Table IV.

ExAMPLE.
1.1 = 00 = 4]
20 - 1-1 = -]
31 - 1.2 = 4]
81 - 33 = =1
11.3 — 4-8 = +1
524 — 1911 = -1

167:19 — 6152 = +1

Now go back and examine your other convergent tables and see if
you find a similar relationship there. If you find that the differences
in the crisscross products as found above give you alternately +1's

‘ Fl‘;)‘}‘é Karl. 13,: Brief History of Mathematics. London: Open Court Publishing Co.,
J chkaon, Leonard Eugene. History of the Theory of Numbers, New York: G. E.
Stechert md Co., 1834. p. 11,

¢ Fink, o% rg 132.
7 Eavea, owa An Introduction to the Hislory of Mathematm, New York Rem-
hart and Co., 1953. p. 92.




12 CONTINUED FRACTIONS

and —1’s, then, what is the formula which is suggested?
1 | Answer: ro8u_y — Ta18y = (=1)%,
! Exercise Set 6

Complete the following convergent table (Table V) and calculate
TaSn-1 — Ta_18y for n = 1 through n = 6.

Tane V
n|—-1]10(1|2|3|4]51]6
Ay 213[1|131(4]1 3
r. 0 1 '1
ss] 110 ‘

Suppose the formula turns out to be true for all cases. Would it be
of any use to us? Look at the last difference of crisscross products in
the example: 167-19 — 61:52 = —1. Thiscan be written as 167(~19) +
61(+52) = 1. Thus, —19-and 52 are integral solutions to 167X +
61Y = 1. It seems that the formula might be useful, so let us see if we
can find a way to prove it. Toward this end we examine a general table
of convergents (Table VI).

TasLx VI \ f
n -1 0 11213 4
Gy ‘@ | as | ay | aq
Ta [T1=0 |[Fo=1]|7m | rs]|rs]| 1
8y |81 =1 |80=0] 8| 8| 8| 8

Evaluating differences of crisscross products in the same manner as
before, we get

o8-y — 738 = 1.1 = 00 =1,

"8 — 18y = 730 — 18 = =1,
But, s =1;
so we have T80 — To8 = —1.

a8 = 1y =?
Previously we found the following relationships:
; n=an+1l,a="n1r =1 andr = an + r.

Also: s = ay, 8 = 0, 8 = 1,and 8 = 81 + 0; 80 8 = as8; + $o.
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CONVERGENTS

Making substitutions of equivalents, we get the following:

rss, — 118y = &1(aan + ro) — n(asd + %)
=801 + 8o — MNd — Ndo
= 1.1 — 0

re8) — 18 = +1.

To evaluate rs8s — 738, we note from previous work that

vy = ars + 1, and 8 = a8 + &.

Substituting these values, we have the following:
rity — a8y = 8(aars + 1) — ra(ashs + &)
= 830573 + &N — T8 — Tad
= 8N — T4

= —1(rs8; — nid).

We have just seen that

98y — N8 = l;

therefore, 738y — Ta8 = —1.

Summarizing our work we have these results:

To8-1 — 180 = +1

8 — T = —1
4 —ns = +1
78y — re8s = —1.

The general formula seems to be

TaSn—i — Tn-18n = (—1)™

This formula has worked in four cases. Will it work for all’ cases?
The proof given in Chapter 12 as Proof No. 3, is carried out m con-
giderable detail. It can be used to illustrate how we might go ‘about
seeking relationships which will enable us to complete a proof by mathe-
matical induction.

13




14 CONTINUED FRACTIONS

Examine further the convergents you have in your convergent tables.
Each convergent, ?’ is a fraction. Can you reduce any of these fractions

to lower terms? Try it. You will find that each of these convergents
is a fraction in lowest terms. Is this surprising? When we say a frac-
tion is in lowest terms we mean that there i8 no integer which will divide
evenly both the numerator and the denominator. Another way of saying
this is to state that the numerator and denominator are relatively prime.

Let us now prove that every convergent, ?, of a continued fraction ts

always in lowest terms.
Proof. We have already proved the general formula:
Padaci — Ta-18n = (—1)"

We now wish to show that r, and s, are relatively prime. The statement
that r, and s, are relatively prime means that there is no integer which
will divide evenly both r, and s,. Now let us assume that there s some
integer b (b # 1) that will divide evenly both r, and 8.. If there exists

such an integer, we could writ;a-':b2 =k, and f-bﬂ = ks, where k; and ks

are integers. Therefore

Ty = bk; and s, = bk:

and if we substitute these expressions in

TaSp—-1 — Tpu-18a = (_1)”’
we have (bk1)8p1 — Tna1(bks) = (—1)"
and b(ki8n—1 — Ta—rks) = (—l)”.

Note: If n is even, then (—1)* is +1; if n is odd, then (—1)"is —1.
The last equation states that there is an integer b >¢ 1 which is a divisor
of +1 or —1. But there is no such integer. Since our supposition has
lead us to a false conclusion, we must conclude that our assumption
that r, and s, have a common divisor is false. Thus we have proved the
following theorem: | | -

TueorReM 4. Each convergent is in lowest terms.
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CONVERGENTS 15

Now look carefully at the convergents in your tables and see if you can
discover any interesting properties that have not already been men-

tioned. Consider the convergents for 7 which are as given in Table
VII. -

TasLe VII .
C, | Cs Cs Cs Cs
3 | 2 | 38 | 48 | 138
1 2 11 13 37
3|33 |34 | 3n | 347
3 | 3.5 |3.455 | 3.462 | 3.459 |
The convergents for 333 are as given in Table VIII.
. TasLe VIII
Ci |C:| Cs C, Cs
1 3 A0 43 | 228
1 2 7 30 187
1 (3] 17 |13 | 1787
1 | 1.5[1.4285]1.4333|1.4331

In theseexamples (Tables VII and VIII) the convergents are alternately
greater and less than the rational number the continued fraction repre-
sents. The last convergent is, of course, exactly this rational number.
We shall now show that this is always the case. We start by consider-
ing the difference between any convergent, C., and the previous con-
vergent, Cp1. | o '

C ‘_ C'l—l — Tn | = rns'i;l - 8,,1",._1‘ o (—l)’l

Sn 8p—1 o Sn—ls_n . Sn—lsn

C = C. = T4l Tn _ Ta41Sn — TaSn4l _ (_1)n+l
" A= = - =
Sn4l Sa 8n418n Sn+18n

Now the s’s are positive integers, 50 both 8,18, and 8»8a41 will always be
positive. If n is even: (—1)"is +1, and (—1)**'is —1. If n is odd:
(=1~ is —1, and (—=1)**'is —1. So in either case C, — Cn-1 and
C.+1 — C, will have different signs. Again, the s’s are always positive
integers. Also each s is larger than the preceding s, so
1 1
<

Sns1Sn  SaSa—l

And now, making use of the “absolute value” symbols, we have the
following:

(=1"

Sn+18n

(=1~
8nSn-1
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This means that each convergent is nearer to the value the continued

fraction represents, E than the preceding convergent. Also, a, is always
less than ; a, being the largest integer less than ;) Also, since the last
convergent is equal to ;, we now have proved the following:
THEOREM 5. The odd convergents form an increasing sequence of
numbers which are all less than E (except that the last number is }
equal to g if # in the number of convergents is odd), and the even-
numbered convergents form a decreasing sequence of numbers which
are all greater than the value : (except that the last number is equal

to % if the number of convergents is even).

We can represent the situation as follows:

n _n
& 8

<Ml . T L chiehieh
8 87 8 8 & 8

We have been discussing the fact that all of the convergents except

the last are different from g. The question which arises naturally at
this point is: How much do the various convergents differ from ;? We
now attempt to answer this question. Let us state the question more
precisely as: How great is the difference between a given rational num-
ber, -2, and the ith convergent, ;-i, of its continued fraction? As a start
we consider the relationship of the ith term a; to the rest of the continued |

fraction. |
e+ ‘ =
as +

a‘+000 )
+ ai +—
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We see that
1

a‘+l+am+”. 1
ta

is a terminating continued fraction and thus represents a rational num-

ber. Let us call this number Ri;,. We can now write the original
continued fraction as follows:
Tma+ 1

s as + 1
o+ 1
t—
a; + R

i+l

Considering this continued fraction as having ¢ 4+ 1 terms, we note

that 5 = ;-‘-*—'. Then applying the formula for the ¢ 4+ 1th convergent
i+1

we proceed. We are interested in the size of the difference between

r re LT .
- and —, that is - — =, so we write:
8 8 ] 8

ro _ T _ 1 _ Biiti 1 _ 14

r
- — R - -
8

8 81 8 Ripsi+ 8 8

- Riprisi + rici8i — Rigirisi — 18

8i(Rip18: + 8i-1)

- Ti=18¢ — T{8i-1
8i(Ripr8: + 8im1)

But Ti-18 — T8im = =%1;

therefore, roor +1

s 8 = 8i(Ris18; + 8i-1) .
Now Ry > a1 because a4 is a positive integer, and R,y is the same
positive integer plus the rest of the continued fraction. Note now that,
since decreasing the size of the denominator results in making a fraction
larger, we have:

r o 1

8 8 8,(a;418; + 8i-1)
But Aip1 8 + 8i-1 = Si41;
s0 we now have ro_r 1

) 8 8i8iy1
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o s . 7 ro_rn . _ 1
This inequality states that iy always lies between o and

1
+ lc'm.
To illustrate the use of this formula let us investigate the size of the
difference between 3% and its third convergent. The convergent table
for 3% is given in Table IX.

Tanrn IX
m | —-1]0]1]2]3] 4] 8
Qy 21311 5] 4
Tn ol1]2(7]9 |52]217
&n 1/]0{113]4 |23] 96
217 1
26 aa< am‘
27 _9 | £l
96 4 4.23
217 _9 |l
96 4 92
217 9 |
Answer: -5-6- -_ i < | +£0.011 |.

When giving this type of answer in decimal form, be certain to round-
off the decimal upward and not downward. Can you explain why you
should not round-off downward?

Exercise Set 7

Investigate the size of the difference between the given number and
its specified convergent. Use the formula and state your answer in
decimal form.

1. 425! and its third convergent.
2. 43¢ and its fourth convergent.




CHAPTER 3

CONTINUED FRACTIONS
AND LINEAR DIOPHANTINE
EQUATIONS OF THE TYPE

am + bn = ¢

DEFINITIONS

An equation of the type am + bn = ¢, where a, b, and ¢ are integers
and for which integral solutions are required, is called a linear diophantine
equation or an indelerminate equation. Integers which when substituted
for m and n make the equation a true statement are called solutions for
the equation.

To find solutions, form the fraction % or z-- Place the larger value

in the numerator. Assume we use %. Expand this fraction into a con-

tinued fraction. Then if there are n terms in the continued fraction,
use the formula:
Tada1 = 8aTa1 = (—1)"

a 7T
But -5 - ;:.
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Substitution gives as,_, — bray = (—=1)»,
if n is even, then
a(‘n—l) + b(-rn—l) = ] and 8y and -1

are solutions for this equation. If n is odd, multiply both sides of the
equation by —1. But we want solutions to

am + bn = ¢, not to am + bn = 1.

To get these solutions, multiply both sides of a(8s-1) + b(—ryey) = 1 by
¢, getting ~

a(c8aey) + b(—cray) = ¢.
Thus, solutions to the equation am + bn = care

m=cs_, and n = —¢r,_,.

ExamrLe. Find integral solutions for the following equation:
83m + 118»n = 3,

!*sl?3§=l+ l1

2 + 1
2+%1
l-i--——l
2+3

TamsLe X
n |—1]/0]1/2/3]|4]| 5] 6
a, 112/2] 1] 2] 4
Tn 0]111}3]7 [10]27118
s, 1101125 7][19] 83
Using Tadn-1 — Tai8n = (—1)" with n = 6,

we have the following:
Te8y — 7y8¢ = (~—1)¢
118(19) — 27(83) = (—1)¢
83(~—27) + 118(19) = 1.

Now multiplying both sides of this equation by 3, we have the following:

3-83(—27) + 3-118(19) = 3.1
83(—81) + 118(57) = 3.
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We see that m = —81 and n = 57 are solutions to the equation
83m + 118n = 3. You should check these answers by substituting
them into the equation.

Can solutions to equations of this type always be found? Let us
investigate this question by considering five integers a, b, ¢, m, and r
with the following properties:

1. a and b are both divisible by some integer k » 1. This means
a = ku, and that b = kv for integers u and v.

2. k is not a divisor of ¢.
3.am+ bn = ¢

Substituting from 1 in the equation am + bn = ¢, we get:
(ku)ym + (kv)n = ¢

k(um + vn) = ¢.

This implies that k is a divisor of ¢, and this contradicts the second
property. This means that integers with the three properties listed
above cannot be found. It also means that not all equations of the type
am + bn = ¢, where a, b, and ¢ are integers, have integral solutions;
2m +- 4n = 3 is an example of such an equation.

Would you care to try to find integral solutions for the equation
2m + 4n = 3? If you can find integers which, when substituted for
m and n, make the equation a true statement, then 3 is divisible by 2

Exercise Set 8

Using continued fractions, find integral solutions for the following
equations. : |

4.217m — 105n =6 5. 33m + 19n = 100 6. 74m — 253n = 1

Suppose we find a pair of integers that satisfy the equation am + bn = |

¢. Are these the only solutions? To answer this question, let us in-
vestigate the equation 83m + 118n = 3 more closely:

83m + 118n = 3 and 83(—81) + 118(57) = 3.

Since both of the left-hand members are equal to the same number,
we have the following:
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1 83m + 118n = 83(—81) 4 118(57)
83m — 83(—81) = 118(57) — 118n
83(m + 81) = 118(57 — n).

Now 83(m + 81) and 118(57 — n) are equal; therefore, they must
have the same factors. But note that 83 and 118 cannot have a com-
mon factor because 45 is a convergent, and we proved that all con-
vergents are in lowest terms. So 83 must be a factor of 57 — n, and

118 must be a factor of m 4+ 81. We now have the following equations:
m + 81 = 118t and 57 — n = 83¢ for some integer ¢.
m = —81 4 118¢ n = 57 — 831,
If m and 7 are solutions to 83m <4 118z = 3, another pair of integers
satisfying the equation can be found by substituting any integer for ¢

| in the expressions for m and n. For example, let us by letting ¢ equal 2,
| find another pair of integers which satisfy the equation 83m + 1181 = 3:

| m= —81 4 118(2) and n = 57 — 83(2)
; m = —81 + 236 n = 57 — 166
i m = 155 n= —100

!

|

som = 155 and n = —109 are solutions for 83m + 118n = 3. You
should check these values by substituting them into the equation.

Exercise Set 9

Using the integers indicated below as values for ¢, find a second pair
of integers which will satisfy each of the equations in Exercise Set 8
(omit the fourth equation in the set). Answers resulting from the follow-
ing values for ¢ are given in Appendix A, but any other integer would
y give valid solutions.




CHAPTER 4

CONTINUED FRACTIONS
AND CONGRUENCES

SOME DEFINITIONS AND EXAMPLES

The expression a = b(mod m) is read ‘“‘a is congruent to b modulo
m” and means: a and b have the same remainder when they are divided
bym. The number m is called the modulus. Forexample:5 = 17(mod 3)
is a true statement, because both 5 and 17 have a remainder of 2 when
they are divided by 3; but 21 = 33(mod 10) is not a true statement,
because 21 and 33 have different remainders upon division by 10.

We can also have congruences involving unknowns such as ax =
b(mod m). A solution for this congruence is a number which when
substituted for z will make the congruence a true statement. The
number 27 is a solution to the congruence 7z = 9(mod 5), because
7.27, or 189, and 9 both have a remainder of 4 when they are divided
by 5. It is also true that if any integral multiple of the modulus is
added to a given solution we obtain another solution. In the case just
given, 27 was a solution; so 27 + 2:5, or 37, is also a solution. Check:
7.37 = 259; and division of 259 by 5 will also give a remainder of 4.

To find solutions for ax = b(mod m) by continued fractions, let us

consider the continued fraction for %. The last convergent will of course
be -:;';. If there are n convérgents, let us substitute r, = a and 8, = m

in the formula 7,841 — a8, = (—1)*, getting the following:




[
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A8py = Tpoym = (—1)"

Tacam 4 (= 1)"
a

Sa-1

a

az = as, = a(r,._;m + (—l)") = fam + (=)™

Now divide both 7,_ym + (--1)* and 1 by the modulus m.

Ta—1 - ___0_

M)rpym + (—1)* m) 1
Pai 9 ,
=7 T

The remainders are (—1)* and 1. If » is even, (—1)" is 1; and 8., is
a solution for ax = 1(mod m). If n is odd, consider —s,—;. Substitut-
ing —s,-1 for z, we have the following:

a

axr = a(—sn—l) = a(-r"—‘m + (—'1)") = —=rp-1m + (—1)"+,

Divide —r,ym 4 (—1)*+1 by the modulus m.

—Ta-1
M) =Tpym 4 (—1)n+1
- rn—lm

(_l)n-l-l
If n is odd, then (—1)*+1is 1.

We conclude that if the number of convergents is even, s._; is a
solution for ax = 1(mod m); and if » is odd, —s.—; is a solution for
az = 1(mod m). But we need a solution for ax = b(mod m). So, if
a(8s—1) = 1(mod m) is a true statement, let us multiply both sides of
this congruence by b, getting a(bs,—;) = b(mod m). Then bs,, is a
solution, if n is even; and —bs,—; is a solution to ax = b(mod m), if n

(the number of convergents for ,%) is odd.
Let us now use continued fractions to solve a ‘convergeni; _

ExampLE. Find a solution for 112 = 13(mod 7).
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TasrLe XI
11 _ 1 n |—1]0[1]2[3] 4
¥ '7"1+1+ i a i[1[1]3
i | 1+ 1 T | 0] 1]1]2]3][11
| . 3 sa | 1]0(17172]7 |

In this case 7 is 4; and since n is even, 8,1 (or 83 which is 2) is a solution to
11z = 1(mod 7); '
80 we write 11.2 = 1(mod 7).
Now multiplying by 13, we have
11(2-13) = 13(mod 7).

So 2-13, or 26, is a solution for 11z = 13(mod 7). - You may check by
dividing both 26:11 and 13 by 7. You will see that the remainder is 6
in both cases. The general solution is 26 + k-7 with k being any integer.
Let k = 2, and find another solution and check it.

If the solution is negative as a result of the number of terms in the
continued fraction being odd, then add to this a multiple of the modulus
large enough to give a positive solution. The positive solutions are
easier to check, but you should also investigate the problem of checking
your negative solutions.

Exercise Set 10

Find a solution for the following convergences, using continued frac-
tions and slso show the general solution. Use the general solution to
find a secqnd solution and check this answer.

1. 7z = 9(mod 5) 2. 17z = 19(mod 12)

3. 13z = 21(mod 9) 4, 29z = 48(mod 11)
If you would like to know more about congruences, you can find a
very good discussion of this topic in the book by Carl H. Denbow

and Victor Goedicke: Foundations of Mathematics. New York: Harper
and Brothers, 1959. Chapter 15.
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CHAPTER 5

CONTINUED FRACTIONS
AND DETERMINANTS

AN INTERESTING QUESTION

7 Would it be possible to find the nth convergent for a continued frac-
] tion without finding first all of the preceding convergents? Mathe-
maticians worked with continued fractions for many years looking
for a way to do this. It can be done, and in doing it you will discover
| an 'intei'ésting relationship between continued fractions and determi-
1 nants. If you have not studied determinants, your teacher will be glad
to help you with the elementary operations that are referred to here,
Let us first consider the problem of finding the numerator, r,, of the
nth convergent. We shall start our investigation by writing the equa-
tion 74 = @aTn-1 + Ta-2 (Which is the same a8 ayrp-1 + 7a-2 = 7,) for the
numerator of the first five convergents of a continued fraction:

afrg + 1y =1
ar + 10 =12
ars + 1 =713
ars +1r2 =14

agrs +rs =715
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Now rearrange these equations in the following manner:

ratare— n =0
rotar— 1 =0

"+t ar:— 13 =0

ratars— 714 | =0

rs + agry — r5 = 0.

We know by definition that »_, = 0, r, = 1. Therefore r, = a;

and, using —r; = —a, for our first equation, we now have the following
equations:
-n = —m
Qry — T ' = —1
" ars— 713 =0
rs 4 ars — 74 =0

rs + agry — 15 = 0.

Here we have five linear equations in the five unknowns, r; through 7s.
We can solve for any one of the unknowns by using determinants.
In particular, let us solve for 7;: '

-1 0 0 0 —a
a —1 o 0 -1
1 az -1 0 0
0 1 Qa4 -1 0
0 0 1 as O

rs =

-1 0 0 0 0
a —1 0 0 0
1 as -1 0 0
0 1 a —1 0
0 0 1 as -1

If we think in terms of evaluating the denominator determinant by
minors, it becomes apparent that the value of this determinant is
(—1)% in this case or (—1)" in the general case. Now let us place the
first column of the numerator determinant in the first position by inter-
changing successively columns 5 and 4,4 and 3,3 and 2, 2and 1. Recall
that interchanging two columns of a determinant results in the sign of
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the determinant being changed. So to get the last column in the first
position, we require four or n — 1 changes of the sign. Now let us change
the sign of the elements in the new first column. It is also true that
changing the signs of the elements in a column changes the sign of the
determinant. We have made n — 1 4+ 1 changes of the sign of the
determinant, which is the same as making the alterations of the deter-
minant mentioned above and then multiplying the determinant by
(=1)*. But remember that the denominator determinant is equal to
(=1)" also, 80 these values cancel out regardless of whether n is even
or odd. So for ry (the numerator of the fifth convergent) we have the
following:

a -1 0 0 0
Qs -1 V) 0

0

1

1

0 1 a -— 1

0 0 1 ay -

0 0 O 1 as

Ty =

The form of the determinant is easy to remember, and it is not diffi-
cult to evaluate by minors with respect to the first column. Deter-
minants of this type are called continuants or cumulants.®

To find the determinant for s; (the denominator of the fifth con-
vergent), we proceed in the same way as we did for ;. Doing so, we
% get the following:

| 1 -1 0 0 O
’ 0 a-1 0 O
& = 0 1 as -1 0
0 0 1 Qg -1
0 0 0 1 as

But this determinant can be simplified by expanding by minors with

| respect to the first column. Deing so, we get the following:

a —1 0 0

8 = 1 as -1 0

' 0 1 Qs -1
i 0 0 1 ap

This process of finding a convergent without first finding the previous
convergents will now be illustrated with an example. Using deter-

'Pemlnglso()akarnbw Lehre von den Keuenbriichcn New York: Chelsea Publishing
p
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minants we evaluate the fourth convergent of the continued fraction

for 2%, All we need are the first four terms: a,, as, a3, and a..

ExampLE.
'72922’2*' l1
1+ 1
3+ —3
2+
2-1 0 O
1 1-1 0 1-1 0 -10 O
0 1 3 -1 201 3-1]-1 13 -1
O 0 1 2 0 1 2 01 2
Ci=" - - -
% 1-1 0 1-1 0
1 3 -1 1 3 -1
o 1 2 o 1 2
2(6+1+2) —-1(-6-1) _29+7 _25
6+1+4+2 9 9

We can show that this really is the fourth convergent by completing
a convergent table (Table XII) for the first four convergents of the
continued fraction for 3%%. We already have the first four a's.

Tasre XII
n |=1]10{1]2]| 3] 4
Qan 2111 3} 2
1 o0l1] 231120
8 1{o[1]1}| 4] 9

Exercise Set 11

Using determinants, find the indicated convergents of the continued
fractions for the following numbers. Check your answers by making
a table of convergents.

1. Third convergent for 33 = ?
2. Third convergent for 33 = ?
3. Fourth convergent for 33 = ?

Of course, the fact that it is easier to get the desired convergents by
first constructing a convergent table is not important. Our objective
is to get new ideas and observe new relationships.
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CHAPYER 6

SOME PRACTICAL
APPLICATIONS OF
CONTINUED FRACTIONS

PART 1: A METHOD FOR FINDING THE TERMS

In many of the practical applications of continued fractions it is
necessary to write the continued fraction for rational numbers in which
the numerator and denominator are quite large. To do this you need
& convenient method for finding the terms. Observe the way the divi-

sions involved in the expansion of 135 are arranged:

EXAMPLE, "15(8;3 + 1 1
2 +
7 + 3
169T—
507 2/ /
77)169
15T‘
75 7
2715
u
1

alw‘u’lw
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If you are interested primarily in obtaining the terms of the continued
fraction, all you need to do is carry out the divisions as shown at the
lower-left in the example for 3. You then keep dividing each re-
mainder into the previous divisor until you get a remainder of sero.
The quotients you have obtained are then the terms of the continued
fraction, as indicated by the arrows, and they can be placed directly

in a convergent table to be used in calculating the convergents.

PART 2: USING CONTINUED FRACTIONS TO SOLVE GEAR-RATIO
PROBLEMS

Continued fractions become very practical mathematical tools for a
machinist who works with lathes or other instruments where shafts
are made to turn by means of gear wheels. The reason for using con-
tinued fractions in such situations is that most gear wheels used in
machine shops have no less than 20 teeth and no more than 100 teeth.
A gear wheel with less than 20 teeth does not mesh smoothly, and if
there are more than 100 teeth the teeth are so small that chey are im-
practical.

If a machinist wants two shafts, A and B, to be connected by two
gear wheels so that shaft A revolves 37 times every time shaft B re-
volves 51 times, he places a gear wheel with 37 teeth on shaft B and a
gear wheel with 51 teeth on shaft A. Then if the gear wheels mesh,
the ratio of the number of revolutions of A to the number of revolutions
of B after any period of time will be 37. Remomber that the shaft
driven by the gear with the larger number of teeth turns more slowly
than the shaft driven by the gear wheel with the smaller number of
teeth.

FirsT EXAMPLE

The problem is that in certain cases the machinist is asked to set up
his machine so that the ratio of the number of revolutions of one shaft
to the number of revolutions of the other after any period of time is,
for example, 0.6713. Now this desired ratio, which was given in decimal
form, can be expressed as a fraction: jo5as. Two gear wheels, one
with 6713 teeth and the other with 10,000 teeth, would do the job;
however, we must remember that the number of teeth must be no more
than 100 and no less than twenty. So the machinist’s problem is to
find a fraction which is very near to ;5 s, bul whose members are no more
than 100 and no less than 20. This is done by expanding the fraction,
,—:—,%'5'5, into a continued fraction and forming a table of convergents.
Recall from a previous discussion that each successive convergent is

nearer to the number the continued fraction represents than the pre-
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ceding one. Therefore the machinist keeps evaluating the convergents
until one gives a numerator or denominator greater than 100. He then
selects the immediately preceding convergent as the fraction he will use
to approximate the desired ratio which was given as a decimal.

Let us now solve the problem described above.
6713 1

— =04 —
2+ i
23 + 1
14 i
1+—1
l+—-—l
5+3
Tasrx XIII
n |—-110]1112]3] 4] § 6 7 8 9
Qan 01112]23] 1 1 1 5 8
Tn 011]0]j1}2]47 96]|145] 821| 6,713
| 8a 1{0]1]1]3]70 143 | 216 11,223 | 10,000

We select the fifth convergent, 43, as our approximation to 0.6713.
Using the formula for the size of the difference between the value of a
continued fraction and its fifth convergent, we have the following in-
equalities:

49 1
06713 - 75| < | Zorm |-
49 1
06713 - | < | g |

49
06713 — z=| < | 0.000005

According to the last inequality, we can see that the error in using two
gears with 49 teeth and 73 teeth, respectively, instead of two gears with
6,713 teeth and 10,000 teeth, respectively, is less than 0.000095. To see
exactly how large the error is, you should divide 49 by 73 and subtract
the quotient from 0.6713.

SECOND EXAMPLE

Find a rational number by using continued fractions whick would be a
good substitule for a machinist to use in selling up a gear ratio instead of
the decimal 0.3847.
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3,847

- e a
0.3847 = 75050 !
]
0
10,000 )3,847

0 2 as
3,847 )10,000 /
7604 1 )
2,300 g'g?)g 1/
] ay
1,541 )2,300
BT 2/ a4
765 )1,541
1,520 gg/
11 )765
60 ]
105 /
99 1 as
5 /
6 1 as
5)6 /
55
1)5
5
0
Tasrz XIV
n 1—-1]0[112[3[4] 5] 6| 7 9
an 02 1 5|

Tn 0[1(0[1
8a 110(11]2

o3| == = o

8
1 1
2| B[347 352 699 | 3,847
5 |13 [ 902 | 915 | 1,817 | 10,000

We notice that in the fifth convergent, 5, both the numerator and
denominator are less than 20, so this is not a suitable rational approxi-
mation to 0.3847. The sixth convergent is >+ and is unsuitable because
its terms are greater than 100. We now riotice that a; is 2, and a¢ is 69, an
unusually large jump. From a previous discussion we know that 337 is
nearer to 0.3847 than is 15. So instead of using 69 as a multiplier, we use
the largest integer between 2 and 69 that will result in both the numera-
tor and denominator being no greater than 100. Accordingly we select
7 as our multiplier, and we find that 7 - 5 4+ 2 = 37,and 7 - 13 4 5 = 96;
so we choose 33 as our rational approximation to 0.2847. Dividing, we
find 33 = 0.385+.

You may have anticipated the next question. What happens if we
want a suitable rational approximation to a‘number such as 0.0327?
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The method we have been using will yield convergents C, = 5 and
Cs = 743- In this case the machinist may have to use compound gears.
This means that he will select a convergent such that the numerator
is larger than 20, find factors of the denominator which are no less than
20 or no more than 100, and use these in a proper arrangement to achieve
the desired ratio.

If you would like to read a good discussion of compound gears see:
John M. Christman's Shop Mathematics. New York: The Macmillian
Company, 1946.

Exercise Set 12

By using continued fractions, find a rational number for a machinist
to use in setting up a gear ratio as a suitable substitute for each of the
decimals given below.

1. 0639 2. 0547 3.0.713 4. 0.3847

PART 3: FINDING RATIONAL APPROXIMATIONS TO THE NUMBERS
= AND ¢
You may find rational approximations to irrational numbers such as
= and ¢ by employing the methods described earlier in Parts 1 and 2.
Consider first the following decimal approximations:

*=~314156926535
e =~ 2718281829459.

Of course you can obtain a rational number approximating = by taking,
for example, the first five digits of the above decimal; i.e., 3.14 1 5, and
writing this as a rational number as follows:

1,415 _ 3,1415
10,000 ~ 10,000°

You could also find a rational number which is a better approximation
to = by using the first six digits of the given decimal; i.e.,, 3.141 59,
This would give:

3.1415 = 3

14,159 _ 314,159
100,000 100,000

However, by using continued fractions you can find rational num-
bers which approximate the value = better than 3.1 4 1 5 does, and
which have numerators less than 314,159 and denominators less than
100,000. As an illustration let us solve now the problem just suggested.

3.14159 = 3
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Problem 1

Find five rational numbers each of which is a closer approximation
to = than is 3.1415, and each of which has a numerator less than 314,159
and a denominator less than 100,000.

Solution: The decimals 3.1415 and 3.14159 are both approximations
to =, and 3.14159 is a closer approximation to = than is 3.1415. The
rational numbers corresponding to these decimals are

31,415 § 314,150
10,000 100,000
314,189

Let us set up the convergent table for the number 155>95s: This con-
vergent table is given in Table XV.

Tastx XV
n [—1]oJ1] 2] 3] 4] 5] 6 7 8
[a, 3| 7] 16| 1] 25 1 7 1
e | 0] 1]3|22]|333[355] 0,208 | 9,563 | 76,149 | 314,159
sn | 1]0] 1| 7[106[113] 2,931 3,044 | 24,239 | 100,000

Did you notice that the second convergent is 3;": which is, probably,
the first rational approximation to = that you learned?

Now 3.14159 is nearer to = than is 3.1415, therefore any number
nearer to 3.14159 than is 3.1415 will be nearer to = than is 3.1415. To
find the required rational numbers, you only need to write the con-
vergents as decimals until you find one that is nearer than 3.1415 to
3.14159. The difference between 3.1415 and 3.14159 is 0.00009. Round-
ing off decimals at the fifth decimal place we have the following calcu-
lations:

G, = 5;’- — 3.00000,
and  3.14159 — 3.00000 = 0.14159.
Cy = 372- ~ 3.14286,
and  3.14286 — 3.14159 = 0.00127.
333
¢, = B < 31415,
and  3.14159 — 3.14151 = 0.00008.

Note that 0.00008 is less than 0.00009, which shows that 433 is nearer

than 3.1415 is to 3.14159. Since each convergent in the convergent
table for 3.14159 is nearer to 3.14159 than the preceding convergent,
we have the result that Cs, Ci, Cs, Cs, and C; are rational numbers
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| 5 with the required properties; i.e., each of the rational numbers 1

2545 2208 8282 and 13313 is nearer than 3.1415 is to = and each has
; & numerator less than 314,159 and a denominator less than 100,000.
| It should be noted that this same process can be used to find other

rational approximations to any irrational number when a decimal ap-

proximation is given.

Excercise 12a.

Find five rational numbers such that each is nearer than 2.7183 to
the number ¢, and such that the numerator of each is less than 271,828
and the denominator of each is less than 100,000.

Answer for Exercise 12a.
The convergent table for 353639, or 2.71828, is given in Table XVI.

TasrLz XVI
nl—1]0l1]2]3] 4] 5] 6] (Table XVI
a 211121 11 1] 4] continued below)
1 ol1/213]8]11]19]87
a1 1l0]1{1183] 4] 7]32
a1l 71 8 o] 10 11 12 13
an |l 1| 1 6 10 1 1 2
7. ] 106 | 193 | 1,264 | 12,833 | 14,007 | 26,930 | 67,057
s, | 30| 71| 465| 4,721 | 5,186 | 9,907 |25,000

67,057 _ 271,828

Note: Cu = 35566 = 100,000

The difference between 2.71828 and 2.7182 is
2.71828 — 2.7182 = 0.00008.

i 4
| 106 9
% Cr = 30 = 2.71795, |
j and  2.71828 — 2.71795 = 0.00033. X
193
Cs = 7o 2.71831‘,

and 2.71831 — 2.71828 = 0.00003. .
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We note that 0.00003 is less than 0.00008, which means that 3" is
nearer than 2.7182 is to 2.71828. Therefore the required rational num-
bers are .

193’ 1,&@__4’ 12,833’ 14,097 .. 4 26,930

71" 465 4721 5186 9907

PART 4: CONTINUED FRACTIONS AND THE SLIDE RULE

You can see an interesting relationship between continued fractions
and settings on a slide rule if you refer to the convergent table for
314.188 _ '3 14159 which we used as an approximation to = in Part 3.
Instead of using long division to check that the rational numbers C,
through C; really are approximations to =, do this division on a slide
rule. After dividing the numerator by the denominator of several of
these numbers; e.g., 33, 355 3:29% 2.292 and 79335 you will be
convinced that they are indeed all very good approximations to =,
which is usually indicated on the D scale of a slide rule.

For example, to divide 355 by 113 on a slide rule, place the hairline
of the indicator over 355 on the D scale. Then place 113 on the C
scale under the hairline. The result of the division will be read on the

D scale under the 1 at the left of the C scale.

Exercise Set 12b

Perform the following divisions on a slide rule (the numbers below
were derived as solutions for Problem 1).

, 3887 , 365 , 9208 | 9563 . 76140
*706 “ 713 291 304 2429

Answer for Exercise 12b
The result of each division should read = on the D scale.
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CHAPTER 7

CONTINUED FRACTIONS
AND QUADRATIC
IRRATIONAL NUMBERS

SOME INTERESTING RELATIONSHIPS

We shall now investigate some of the interesting relationships be-
tween continued fractions and quadratic irrational numbers. These

are numbers of the form ‘%ﬁ where A and C are integers, C = 0,
and B is a positive integer such that /B is irrational.

You should first fix in mind the concept of the integer part of a num-
ber. This concept will be very useful to you as you read the rest of this
booklet. Be certain you understand the statements below which were
chosen to help make the idea clear.

DEFINITION: The integer part of a number i3 the largest integer which
18 less than or equal to the number.

1. The integer part of 3% is 3.

2. The integer part of 6.75 is 6.
3. The integer part of /5 is 2 because v/5 is between 2 and 3.
4. The integer part of V17 4+ 5is 9.




QUADRATIC IRRATIONAL NUMBERS 39

5. The integer part of V13 — 1is 2.

6. The integer part of 4—'|—-T3— V15 s 9.

7. The integer part of —3;11- is —4.

2 — V7

7 is —1.

8. The integer part of

You can find the integer part of a quadratic irrational quickly if
you first think of the integer part of the irrational part. The integer
part of a number, N, is often written [N]; for example, [2.07] = 2.
However, this notation will not be used in this booklet.

Exercise Set 13
Find the integer part of each of the following numbers:

3+ V1T . 9— VIO
— L —

1. 963 2. vV53 3. 4. —52 5 5

Before going further, it might be well to review the process of ration-
. : : C
alizing the denominator of a fraction of the form m You may

rationalize the denominator by multiplying both numerator and de-
nominator by the conjugate of the denominator. The result of this
multiplication will be a fraction whose denominator contains no ir-
rational number.

ExampLE 1. Rationalize the denominator in the fraction -—-——‘3 — 3

2 2B+v3) __6@+vd _6B+ 3
3-va B-V2B+vD  9-4 5

A study of the relationships between continued fractions and ir-
rational numbers can be instrumental in helping you gain a deeper
insight into the relationships between rational and irrational numbers.
In this chapter we will be dealing with quadratic irrationals only. You
will first learn how to expand quadratic irrationals into continued frac-
tions, using what we shall call the three-step process.

The three-step process will now be illustrated by developing the con-
tinued fraction for v8. Numbers such as v/8, which are of the form
v/B where B is a positive integer, are called pure quadratic irrationals.
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Step 1. The integer part of V8 is 2.

or VB =2+ (-2 + VB splitting the number.
- 1 We shall call this ste
Step 2. Write —2 + V8 as 1 © e J'h.pp‘.:: ope'r'“'imﬁ
-2 4 V8
Step 3. Rationalize the denominator in ﬁ :
1 (-2-v8 _-2-vB_-2-v8_2+V8
(-2 + V8) (-2 - V8) 4-8 -4 4
We now have V8 = 2 + -E-TIW
4

We keep repeating these three steps. The three steps of the three-step
process are as follows:

(1) split  (2) flip (3) rationalize.

Now apply the three steps to 2+4—\/8, as shown below.
Step 1. The integer part of 2 +4\/§ is 1.
Split-2—+4—\/§,getting: 1+ (2 +4\/§ - 1) =1+ 2+ \f —4
\
-14 23 V8
Step 2. Flip :—g—i-ﬂ, getting: ;
-2+ V8

, . 4
Step 3. Rationalize the denominator in ———————, getting:
ep a e denominator in 2+ V3 getting

?
‘4 —2- VB _4(-2- VB _4(-2- VB) _

(-2—18) —-2-v8  4-8 —4

24+ V8
T
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Now we can write: V8 = 2 + —
14—
2+ V8
1
Now perform the three-step process on 2 +1 V8 as shown below.
Step 1. Split 2 +1 ‘/§. The integer part of 2 +1 VBig4,
2+l\/§=4+2+l\/§_4=4+2+s:§—4=4+-vqu-s/ﬁ
Step 2. Flip ii-—\—/_—s, getting: i .
-2+ V8

. . L] 1 .
Step 3. Rationalize the denominator in ————=, getting:
P n omin n 2+ Vs getuing

1 (—2-VvB _-2-VvB_2+V8
(-2 + V8) (-2 — V?8) 4-8 4
Now we have: V8 =2+ 11
1+ i
i+ 2 4+ V8
4

\/ﬁ, but looking

We could now repeat the three-step process on 2+
back over our work we note that we have already applied the three

2 +4\/§, and that the next two terms that arose were 1 and 4.
Then if we applied the three steps to 2 +4\/§
get the terms 1 and 4. Therefore the terms are repeating. The con-
tinued fraction for v/8 will never terminate, and we can now express
+/8 as the following continued fraction.

VE=2+ o

1+ 1
44 1

steps to
again, we should again
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Let us now examine the convergent table (Table XVII) for this
continued fraction.

Tamis XVII
n |—-1|0|1|2]| 3| 4] 5] 6] 7| 8
a, 2(1 141 1] 411 4| 1
Tn 0{1[2[3 (14178299 [478 | 577
8n 1/0]1[1] 5] 6129 (35169 [ 204

The fifth convergent, :—:, = 2827584

99
75 = 282857+

The seventh convergent, %, = 2.82840+

The eighth convergent, izz%, = 282843+

From a standard set of tables, we read: /§ = 2.828427+4-.

The sixth convergent,

Exercise Set 14

Using the three-step process, expand the following pure quadratic
irrationals into continued fractions until you see the terms repeating.
(The terms you find may be checked against those given in Appendix
B: Answers to Exercises.)

1.Vil 2 V56 3.V3 4. VT

Next, divide two of the larger convergents for each number getting
a decimal value, and compare this with the values in the square root
table in a mathematics handbook or extract the square root by a dif-
ferent method.

COMPARISON OF CONTINUED FRACTION REPRESENTATION
WITH DEGIMAL REPRESENTATION

It is interesting-to compare the continued fraction-representation of
an irrational with ‘the-decimal expression of an irrational. We know
that the digits in the-decimal expression of an irrational number never
repeat. We also know~that:if the-digits-of a.decimal do repeat, then
that decimal represents a. rational number. (If you are not familiar
with these ideas yourmay wish to refer to Rroof No. 5imAppendix A.)
But you: have just-found that the terms of the continued fractions of
four irrationalanumbersrhave nicely repeatingrterms. Did you notice
that in each offyour-answers the-last term before~the beginning:of each
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repeating set of terms is twice the first term? We shall prove later that
this must always be true. What else can you find that is interesting
about the terms of the continued fractions which you have developed?

USING THE THREE-STEP PROCESS TO EXPAND QUADRATIC IRRATIONALS

The three-step process can also be used to expand more general quad-
ratic irrationals of the type é—icﬁ-’ where A and C are integers dif-
ferent from zero, and where v/B is an irrational number.

ExaMPLE 2. Use the three-step process to develop the continued

fraction for #3—5
Step 1.
1+ +v35 _ 1+ 435 .\ _ 1+ v35 -6 _
LtV g (LEVB ) g4 1EVEZ0
Step 2.
3+M=3+ ; =
-5+ V35
Step 3.
3 + L =3+ .
2 (=5 — v35) 2 (=5 — +/35)
(=5 + v/35) (—5 — v35) 25 — 35
Step 1.
3+——1 =3+ 1 -
5 + /35 2 + 5+\/§5_2)
5 5
3+ 1 =3+ 1 =
2_,_5+\/g5—10 2_'_—5-;\/35
Step 2. Step 3.
3+ 11 =3+ 11 =
2+ — 2t — 5 (—5-vm

-5+ V35 =5 + /35 (=5 = v/35)
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Step 1.
1 1
3 4+ T =3 4 T -
2t 37 vm 2t T Ve
5 5+ (52 -5
3 + - -3+ —
2 + —— 2+ =
5+ v35 - 10 =5+ V35
St —— St ——2—
But we have already applied the process to #‘.’TB ; 80 the terms
are repeating, and the continued fraction for *1 '; V35 appears as
follows:
+1 -;\/53 -3+ 1 :
2+ — 1
5+ ——
2+ 54 ...

It requires a considerable amount of effort to expand a quadratic
irrational by the three-step process. However, since the ideas we are
to explore stem from continued fractions that have been developed in
this manner it is important that you know how to expand any quadratic
irrational number by the three-step process. Later in this chapter we
will develop an easier method for finding the terms of a quadratic.
Now let us observe one more expansion.

2 +3\/3 into a continued fraction.

ExamrLE 3. Expand

Step 1.
§+‘/5=1+3_+_\/5_1=1+2_+M=1+‘1+\/3=
3 3 3 3
Step 2. Step 3.
] ]
1+ 3 =1+ 3 (=1 = v3)
T+v3 T+ Vo(-1- v
1 1
T v/ MR T ey |
-4 4 .




AR = s e s

QUADRATIC IRRATIONAL NUMBERS 45

But 3 is not an exact divisor of 4. This is the first case where we have
encountered this problem. To handle this, multiply the numerator and

the denominator of the original expression, 2 + V5 , by 3, getting
6 + V45 L .
— Then expand this equivalent quadratic irrational, and all
of the divisions will be exact. The first three steps are carried out here
as an illustration. We start our expansion using G—tg—@ instead of
2 + V5,

3 - .
6_4‘9_ \’45=1.|.(6‘|'T V45_1)= 1+6+‘/§5"9=

1+M-1+ 1

9
S+ va
1 1
It— S =vp - 't =-vap
(=3 + vVa5)(=3 — V1) =36

1
XV

4

Exercise Set 15

Expand the following quadratic irrationals using the three-step
process. Carry out the expansion until the terms start to repeat.

1+ Vil 3+ V15 6+ v2
1 TVl 2EVIE g 2T

Each of the quadratic irrationals that we have expanded into a con-
tinued fraction has resulted in a continued fraction with terms that
repeat after a certain point. Do you feel that this would be true for
every quadratic irrational? This question will be discussed again in a
later chapter.

CONVERTING A REPEATING CONTINUED FRACTION
INTO A QUADRATIC IRRATIONAL

We shall consider next the problem of converting a continued frac-
tion which has repeating terms into a quadratic irrational. A method
of doing this will now be illustrated by an example.
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ExAMPLE 4.
Convert 2 + 1 1 to the form A_—%ﬁB
5+ 1
1+ i
3+ U
5+ —3
1+ 34+...

Solution. Now if we let X represent the continued fraction itself, and
Y represent the repeating part, we get the following equations:

Equation 1. Equation 2.
X=2+ — V=5+—
5 -+ i 1+—‘—l
1+ 1 3+?
3+—1——-
5+ ——
1+§+...
Equation 3.
X=2+3
Solving Equation 2 for ¥, we find the following:
T 1Y 3v+1 Tty +1
Y Y
1 <, 3Y+1 20V45+4+3V+1
Sty rigy “StawvyiT v +1 =
3Y +1
23Y 4+ 6
4Y 4+ 1°
23Y 4+ 6

We now have the equation Y = wr+i

This can be converted as follows:
4Y2 4+ Y =23Y 4+ 6
4Y2 - 22Y -6 =0
2Y2 - 11Y - 3 = 0.

e —
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Y is a root of the quadratic equation 2Y2 — 11Y — 3 = 0. We also
note, now, that Y is positive. Using the quadratic equation we can
now write Y as follows:

11 + V112 — 4(2)(-3)
2-2

_ N+ VT + A
= 2.2

_ 11 + V145
= T.

Substituting this value of ¥ in Equation 3, we can evaluate X, as
follows:

Y =

Y

Y

1 1 4
X=24+5=2 =24+ — =
ty * T + V145 1 + V145
4
2 + 4 (ll—Vl45)=2+ll—Vl5___
(11 + V145) (11 — V'145) —6
-12+ 11 — V145 _ 1 + V145
-6 - 6 )
The given repeating continued fraction can now be exhibited as a quad-
ratic irrational number as required. Since X = lﬂsﬂ,
2 4+ 1 : _1+ 6\/145
5+ i
1+ i
5+ —
143

34 ...

Exercise Set 16

Use the method which was illustrated in Example 4 to convert the fol-
lowing repeating continued fractions to quadratic irrational numbers.

1 1
i 2.3 +

3+ —— 2 +

1. 2 +

1
1

14— 1+ —
2+i+...

1
3+T+'~--
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1

P —
2 + —
3+§+.“

3.4+

NON-TERMINATING CONTINUED FRACTIONS

We noted earlier that the continued fraction that corresponds to a

rational number always terminates. You have noticed that the con-
tinued fractions which you have obtained for several irrational num-
bers never terminate but give rise to an infinite succession of terms. We
shall now prove that this is true of all irrational numbers.

We start by investigating the expansion of an irrational number, X,
into a continued fraction.

X = aQy + X’
Here a, is the integer part of X.
X'
Let Xz = "'];'
X"
1
X=a+ E

If X, is a rational number, we can now write
Xgm + 1

X,
This last equation implies that X is equal to a rational number, which
is a contradiction since we assumed X to be irrational. We conclude,
then, that X, is irrational.
The same argument could be used to show that X, is irrational,
also X, X5, ete. Our conclusion is that the continued fraction for any
irrational number will not terminate.

X =

TERM TABLES

Now that you have learned to expand quadratic irrationals into
continued fractions, you are in a position to study some interesting rela-

tionships concerning the terms of these continued fractions. You will

now learn a way to find the terms for the continued fraction of a quad-
ratic irrational quickly and easily. This will be done through the use

e -
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of term tables. Recall now our previous discussion: just where did we
get the terms of continued fractions? Each term, you remember, was

ﬂc—‘ﬁ’-. We shell

now seek formulas that will give us the A’s and C’s more quickly than
the three-step process.

the integer part of some expression of the type

We start by expanding the irrational We note that

A+ VB
C

A+ VB
——

=a + -lu_, where a, is the integer part of ‘:1—+CLE, and that

As + VB

us is an irrational of the type —o We now try to discover a
2

way of expressing us which will be —C in terms of the integers
3
involved in us, namely: A, and C; (B does not change).
We now apply the three-step process to us:

uy = as + (ﬁa—‘/ﬁ - a,), where a: is the integer part of us;

.A¢+\/§—ang=a +A2—azcz+\/§,

U = Qg + C2 2 C’ y
= a + - = 03 + 1
ve = G C: = 8 T “C,[(A; — a:Cs) — VB
(Az - (1202) + \/_B (Az - 0202)2 - B
1 _ 1
“t G —aty =vE @7 @h-4)+ VB
(Az - 0202)2 - B B - (0202 - A2)2
C, C, '
1 1
WSt LI VE :
. Ca .

Now hy comparing these last expressions for u, with the previous three
expressions for us, above, we get the desired formulas for As, and Cs:

Aa = (1202 - Az
_ B - As
C; = G
v _ At VB
3 (:'3

a; = the integer part of us.
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Generalizing these formulas, we have the following:
An = an—lCn—-l - An—-l

B - A;?
Cﬂ - Cn-l
0 = An 40-“\/3

= the integer part of u,.

The terms of the continued fraction for v/71 will now be found by
using the above formulas. Remember that each 4, C, and a is found
by using the preceding A, C, and a. Therefore we can get all of the
a’s (the terms) of the continued fraction that we desire just by knowing
A,, Cy, and .. These, of course, are just the A, the C, and the integer
part of the original quadratic irrational. Let us now use these formulas
in finding the terms for the continued fraction for v/71.

Write: V71l = a1 + A—l%l—\/——B- - a.

0+\/_

— 8;sowehave 4, = 0,C, = I,al = 8,

But V71 =8+ ——

Therefore, when using term tables to find the terms for a pure quadratic:
A, is always 0, C is always 1, and a is the integer part of the given pure
quadratic irrational.

Now place these values in a term table as shown in Table XVIII

TasLe XVIII
213

3
W= |

Cc==% =—1
_ A+ VB _ 84 VTl
- C, - T

V71

= the integer part of -8—+7 , which is 2.
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Don't try to memorize these formulas as you make your first term
tables, but watch for the order in which you use the numbers which
are already in the table. This will help you to see that with a little
practice you can fill in the term tables without doing any ‘‘scratch’”
work on the side.

Table XIX is the term table for v/71, completed for the first ten
terms. You should practice with the formulas until you understand
how the numbers in this table were obtained.

TasLz XIX
n 1{2(3}! 4|51 6{7]|8] 9]10
A,)0|8|6]| 4|7 7/14|6)| 8] 8
Cn J 715 {11 g 11167 1| 7
a, | 81212 171 112]2]|16] 2

Notice that A1q, C1o, and ayo are the same as A,, Cs, and aa respectively.
Therefore a;; will be the same as as, a;; the same as a4, etc. Thus the
sequence of terms as, a, . . . , ay will be exactly the same as the sequence
@ Q1 - - . , G17, €tc. So once more a pure quadratic has given us re-
peating terms in its continued fraction. Now, what have we discovered
about the last term before the terms start to repeat? Is it twice a,?

These formulas are quite general. A, and C; do not have to be posi-
tive.

ExaMpLE. Use a term table to find the terms of the continued fraction

for #7.

A1=—2 A2=0101—A1=—1(—3)—(—2)=3+2=5
_B—A¢ _7-(5_7-2_—18

C, = -3 C, = G — =3 = "3 =6
aq = —1
‘ _ 547
“="%
ag = 1
Table XX gives the term table for :2—1_3ﬁ The first five terms
have been evaluated. The terms start repeating at n = 5.
TasLE XX
n 1123|415
A, | —21|5]|1]| 211
Cn | -3|6]1|311
a, |—-1]1]3]1]3
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Let us now try to make a term table for 2 +2ﬁ

4, =2 n |1(2
B =17 ‘A.._'22
Cy = 2 C.12

a, | 2
ay - 2

A3=(1401—A1-2'2—2‘=2

c =B-—A,’=7—2’=7—4“§
: C, 2 2 " 3

But this last fraction is not an exact division! This happened once
before when we tried to expand 2 +3\/5

. In order to avoid this problem
in the future, let us now prove a helpful theorem.

THEORE_I\!. In the expansion of a given quadratic irrational
4 +C VB nto a continued fraction, B — A,? will always be exactly

divisible by Co—y if B — A? s exactly divisible by C and only if
B — A?is exactly divisible by C.

Before proving the theorem, note that 4, and C, are respectively
the 4 and C of the given quadratic irrational. Also remember that
- 2
each C appearing in the continued fraction is C, = B——i 0

. Our
Cn—l
method of proof will be to show that B — (Anp1)? is exactly divisible

by Cy if and only if B — 4,2 s exactly divisible by C,.

Proof. By the formulas we use in constructing term tables, we find
that:

C _ B — A.,H.]z . B - (anCn - Aﬂ)z
ndl = C” - Cn

- B - (a”20”2 - 2anCnA'n + Anz)
= C”
_ B — a,%C, + 20,C\A, — A2
== C”
_ 20,Cads — a,3C, + B — A,
= C”

B - Ay _ 2a,C,A, — a,*C,? + B - A,

C. - C. Cc, -

Y

el

o

e e
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- A'H-l’
]
Un

is cbviously divisible by C,. We now have the desired result. Namely,

The numerator, 2a,Cod, — @,1C,? in the last expression for B

B — Aw? is divisible by C, if and only if B — A4,? is divisible by C,
This means that B — A,? is divisible by C, if and only if B — 4,? i
divisible by Cy. Therefore you should not start expanding a quadrati

of the form #ﬁ into a continued fraction, and you sheuld no

start to construct a term table until you have checked to see tha
B — A% isdivisible by C. Then if it is not, multiply the numerator anc

B-+vA
C

C(B — VA) BC - VAC?
c-¢ c:

And now it is easy to see that AC? — (BC)? 1s divisible by C2.
2 + V7
2

denominator of by C as follows:

In the problem of expanding into a continued fraction:

Ay =2,B="7andC, = 2. Weknow that B, — 4,? (which is 7 — 22?)
is not divisible by Cy (which is 2). Therefore multiply numerator and
4+ V28
4
continued fraction, and all divisions will be exact.

denominator by 2, getting . Now you can expand this into a

Exercise Set 17

Make term tables for the following quadratic irrational numbers.
Carry each table out until the terms start to repeat.

1. Va7 2. V33 3. v3i 4.%’
5.2+~/13 6.—3+\/§l 7.--3+\/35 s.2+‘/6

3 4 -2 4

B
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CHAPTER 8

L

CONTINUED FRACTIONS
AND PELL'S EQUATION

PRELIMINARY INVESTIGATION

Before starting a scudy of Pell’s equation, you should re-examine the
terms of each of the continued fractions you have found so far for pure

quadratic irrationals (numbers of the type vB). You should find that
the terms of each of these continued fractions form a sequence of the
following type:

Q) Qs A3y * - -, Ay, 2al’ as a3, - -, Ay, 2a,, 1 TR
ExAMPLESs.

For V14 the terms are 3, 1, 2, ,6,1,2,1,6,---
For V23 the terms are 4, 1, 3, 1,81,3,1,8,--.
For V47 the terms are 6, 1, 5, 1, 12, 1,5,1,12,. ..

You should find that the terms in your term tables for pure quadratic
irrationals also have the property that the repeating series starts with
@s, and the last term in the repeating series is 2a;. We shall later prove
that this must always be true for the terms of pure quadratic irrationals.

PELL'S EQUATION

An equation of the form 2 — Py? = i, where P is a positive integer,
is called a Pell’s equation. We shall now show that integral values of
z and y that will satisfy any equation of this type can always be found.

g G dp
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For example, 22 — 39y? = 1 is a Pell’s equation; and z = 25, and y = 4
are solutions for this equation.
Check: 22 =302 =1 252 — 39.42 = ?

625 — 3916 = ?

625 — 624 =1

Let us investigate the continued fraction for VP to see if we can
discover a relationship between it and Pell’s equation, 22 — Py* = 1,

vP =a + 11

aa+a’+... 1

VP =a + i
a: +
a+ 1 ‘

VP=a+ 1
a: +
a+ . 1
+ 1
Gt o F VP

In the last expression for VP the last term, a4, is a1+ vVP. Now

gince the last convergent (:": in this case) is equal to the number the
n+

continued fraction represents, we apply the formula for the (n 4 1)th
convergent, getting:

gl = \/T) — AnyATn + Ta—1

Sn4t Ani18n + su—l.

C'H'l =
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Pa—

But Anp is @ + VP,

.\/F = (al + \/-f)rn + Ta1
(an + VP )8n + 8n

VPl(a1 + VP)sy + 801l = (a1 + VP)ra + 10y
VPsp(a1 + VP) + VPspy = tts + 1.VP + 1oy
018, VP + 8P + 8,1VP = an + 1.VP + 10y
8aP <+ (@18n + 8a—)) VP = arn + 7oy + 72 VP

The left and right members of this last equation are equal. But a
rational number cannot equal an irrational number. Therfore the
rational parts must be equal, and the irrational parts must be equal.
As a result of this observation, we have the following equations:

snP = a1y + Pa=1 and Q18 + Sp-l = Ty
or Tael = 8P — ayr, and Spel = Th — M8a.

But from our discussion of the crisscross products in the convergent
tables we have
Ta8a—l = 8pfn-1 = ("‘1)".

Now substituting in this equation the values for 7, and s,.—; from the
two previous equations we get the following: |

Ta(fn — Q18y) — 8p(8aP — airs) = (—1)"
Tal — @ira8n — P82 + ai7asy = (—1)»
a2 — Pgy? = (—=1)~

We see that r, and s, are solutions to the equation 22 — Py? = (—1).
Thus, if we want integers which will satisfy an equation of the type
22 — Py?® = (—1)» we find the terms for the continued fraction for
VP and form a table of convergents. If n is the number of terms be-
fore the term 2a, appears; then, £ = r, and y = s,, which are the numera-
tor and denominator respectively of the nth convergent, are solutions
for the equation. If n is even, z = r, and y = s, are solutions for z2 —
Py* = 1. If n is odd, we have solutions for 22 — Py? = —1. If we
insist upon solutions for 2?2 — Py? = 1 and if n is odd, we then use as
our solutions £ = 7, and y = s;,; and since 2n is an even number, we
have

(r2n)? — P(830)* = 1.

SOLUTIONS FOR TWO PELL'S EQUATIONS

The theory will now be illustrated by solving two Pell’s equations,
one with n an even number and one with n an odd number.
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Exampri 1. Find integral solutions for the equation:
x? — 28y = 1.
First form the term table and then the convergent table for V28.

Teru TanLE CoONVERGENT TanLE i
n T11213]4 5 m T—1Jol1] 2] 3] 4
[A,]0[5[4]4]5 an 51 3| 2| 3
C.|1({3]4]|3]1 ra | O0[1[5]16]37 127 i
a, 15(3[2]3 |10 8n 1{ol1] 3| 7] 24

For this example we use n = 4, because for n = 5 the term as = 10
which is twice @,. So the numerator and denominator of the fourth
convergent are the required values for z and . We have 2 = 127 and
y = 24,

Check: x? — 28yt = 1 1272 — 28 -242 = ?
16,129 — 16,128 = 1

It was stated that if n is odd, then 7, and 8;, would be solutions to
z? — Py? = 1. It istrue that 2n is even, but this in itself does not mean
that ;. and s:. are solutions. However, if you will review in this
chapter our initial investigation of the form of the continued fraction for
VP, you will see that aa = Gan, Gap1 = Gta41, ANd Gry = G201 We
could carry through the same work as before for Ciay1 USING G2at41 =
a1, + VP and get the 1osult r,? — Pss,? = (—1)*; and since 2n is
even we would have

r!a’ - P.sia’ = 1.

Let us now apply these ideas.

ExampLe 2. Find integers that satisfy the equation
z? — 41y = 1.

’ Teru TABLE FOR V41

n 1{2]3] 4
A, |0]6]4] 6
C, 11]15}56] 1
a, | 6]12]2112

Here the term 12, which is 2a,, is ai; so n = 3. But if n is odd, the
solutions to our equation will be 3, and sz.. In this case we will want
ro and ss.” Since the terms repeat, it is not necessary to calculate more
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a’s. Weknowas = 2,andas = 2. Now placing these in a convergent
table, as shown in Table XXI, we find ¢ and s,.

TasLe XXI
n |-=1]0]1] 2| 3 4 5 6
A 6] 2] 2] 12 2 2
Tn 0/1]6 1332 (397|826 2,049
Sp 110j1] 2] 5] 62[129] 320

X =1reg= 2,049

Yy = 8¢ = 320

Check: 22— 41y =1 20492 — 41(320)2 = ?

4,198,401 — 4,198,400 = 1

Exercise Set 18
Find integral solutions for the following Pell’s equations.
lLLa2?~ Ty2=1 2, 22 — 21y =1 3. 22 — 342 =1
4, 22 — 132 = 1 5. 22 — 202 = 1

Regardless of whether n is even or odd, we know 2n is even. Now
since £ = 1y, and y = s, are solutions to the equation 22 4+ Py? = 1,
we have here a method of obtaining more solutions to any equation of
the type 22 + Py? = 1.

If niseven, thenz = r,and y = s, satisfy the equation. Another
pair of integers which will satisfy the same equation is 7, and s;,. In
general, solutions are £ = r;, and y = s, for any positive integer k.
If n is odd, then you must use £ = r,, and Y = 8, for your first pair of
solutions. Therefore, since the product of 3 and any odd number is an
odd number, you must use z = r,, and Y = & for your second pair of
solutions. In general, if n is odd, you will have solutions to the Pell’s
equation 2* + Py? = 1 by using £ = r4, and y = s;, where b is an
even positive integer.

ExampLE 3. Find two pairs of integers which will satisfy the equation
22 - 39y% = 1.
TeErM TABLE For /39

n |1]12] 3|4
A4,]0/G| 66
Cn|113] 1(3
a, |6]4(12]4

i S
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Here the term 12, which is 2a,, is a3; 80 we use n = 2 and find that z, = r,
and i = s; are solutions. Our discussion above tells us that . = r, and
y2 = s, should be another pair of solutions.

Let us now construct a convergent table for the first four convergents.

CONVERGENT TABLE FOR /39

n |—1]0]1] 2 3 4

Gn 6] 4] 12 4

Tn 0] 1]6]25 |306 |1,249

8n 110[1] 4| 49| 200
x1=7‘3=25 x2=r4=1,249
h==8=4 Yo = 8 = 200
Check: 22 —3%%=1 Check: 22 -39 =1

252 — 39-42 = ? 12492 — 39 -200% = ?

625 — 624 = 1 1,560,001 — 1,560,000 = 1

Exercise Set 19

Using the ideas just discussed, find the next pair of solutions to the
following equations (these equations are the same as the first three
equations in Exercise Set 18).

lLLz22 =Ty =1 2. 22— 21y2 =1 3. 22— 34y =1

We have shown that 7, and s, are integral solutions of the equation
22 — Py? = 1 when n is the number of the term preceding the term
2a; in the continued fraction for P. We also showed that 7, and s,
are solutions. Now if n is very large, say 6, the process of obtaining all

r7, Ti. . . .
of the convergents from 5—7 to ;—’3 involves many arithmetic computations
: 7 12

with numbers that are probably very large. It would, therefore, be
convenient if we could discover formulas that would enable us to find
73, and Sz, in terms of r, and s, directly, without having to evaluate all
of the »’s and s’s in between.

Let us start looking for such formulas by examining the case where
n = 2. Assume that 72 and s; are the solutions to some Peli’s equation,
z22 — Py? = 1. If this is true, r, = z and s; = y. We will then use these
values to compute r, and s, by means of a convergent table. If r,
and s; are solutions, then r, and s, are also. After finding an expression
for r; and s, we will attempt to express r, and s, in terms of z, y, and P.

e AL w1 e




60 CONTINUED FRACTIONS

TasLz XXII
n -1(0]1 2 3 4
ay ay as 2a, 7]
T Oll|ay| e+ 1 = z| 20,2 + a; | 2100 + a1, +z
8p 110]1 a =y 20y + 202y 4 a2 + y

& =2am0y+y + a
=aay + a2 + aGy + y but a2 =y
=aay+y + ylma + 1)
= y(aaz: + 1) ‘+ y(@as +1) but ame+ 1=z
= yz + yx

8 = 2y

ry = 20,05 + @102 + 2
= 10 + + @102 + ayas
=z(mar+1) +afax+a) but 2 =a+1 and a = Yy
=z .+ ylaxr + a)

Now multiply and divide y(a;xz + a,) by y.

=2t + y? (—alx;— =)

Note now that any solution to 22 — Py? = 1 is determined by P;
therefore, P must appear somewhere in our expressions for r, and 84.

Is it possible that MTM is equal to P? Solving 22 -- Py? = 1 for
P gives:

2? = Py? =1
Py =g -1
2 -1
P=—:l-/2———.

Now a3 = y, so multiply the numerator of 2% ;' o by a2 and the de-

nominator by y.

y
The numerator of the expression for P involves — 1, and the denomina-
tor is 2. The expression which we think might be equal to P has now

T ot s o € ot o o o i
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a denominator of y2, which is what we want; so instead of performing a
division to get —1 in the numerator, let us add +1 and —1 to the
numerator:

re = a2t + y? (alazx + al;: +1 - 1).

Now substitute z for a,as + 1:

=2t 4 g (alazx -;2:»: - 1) )

= 2t 4 g (x(a»laz -I;zl) - 1).

Again substitute z for a;as + 1:

- 2 -
- x2+yz(f_“;2_l) - x,+yz(x - 1).

But we saw before that

22— 1
P = "
Substitution gives us
Ty = a? + y’P

and this is the kind of expression that we have been trying to find.
We now know that if x = ryand y = s; are solutions to z2 — Py? = 1,
then the solutions 7 and s, are given by the formulas:

ry = r% 4 Ps? and 8 = 2rs8,. .

This suggests that in general: if z; and y are solutions to 2 — Py? = 1,
then z; = z;2 4+ Py,? and y» = 2x,y, are also solutions. It is not difficult
to prove that these formulas always hold true. (Proof is given in Ap-
pendix A, Proof No. 4.) :

The following example illustrates the use of these formulas.

ExaMpLE. z, = 161 and 5 = 24 are solutions to the equation
2t — 45y = 1. |
Find another pair of integers z; and y, which will satisfy this equation. 3‘
r2 = m® 4 Py? Y2 = 2z
z3 = 1612 4 45-24?2 ys = 2(161)24
zy = 25,921 4 25,920 y, = 7,728
z: = 51,841
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Check:
3 — Pyy = 1 51,841% — 45(59,721,984) - ?
2,687,489,281 — 2,687,489,280 = 1
Exercise Set 19a

The following five equations of the type z* — Py?® = 1 are presented
with one pair of solutions for each equation. Using the formulas just

developed, find a second pair of solutions and check by substituting
into the original equation.

2.z’—l2y’=l Ty = 7, =2

3.2 — 26y = 1 1= S,y=1
4.3"—387’-1 31‘37,”1-6

e _——n
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CHAPTER 9

INITIALLY REPEATING
CONTINUED FRACTIONS

AND
QUADRATIC EQUATIONS

TERMINOLOGY EMPLOYED

At this time let us recall some of the terminology used in discussing
quadratic irrationals. Once again, by a quadratic irrational we mean

a number of the type ’-1—%,—@ where A and C are integers, and C » 0,

and B is a positive integer such that v/B is an irrational number.

Every quadratic irrational has a conjugate. The conjugate is the same
number with the sign of the irrational part changed. Following are
some examples:

1. The conjugate of 3 + V5 is 3 — V5.

2, The conjugate of —+/7 is V7.

3. The conjugate of 2 +5ﬁ is 2 —5\/?.

If one root of a quadratic equation is irrational then the second root
is the conjugate of the first root. For example, therootsof z* — 4z — 1 =
Oarez, =2+ V5and 2z = 2 — V5.
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64 CONTINUED FRACTIONS

Now look at a repeating continued fraction in which the repeating
sequence starts with a;. We shall call continued fractions of this type
initially repeating continued fractions. In general, they are of the follow-
ing form.

1

a’+‘cl.
+ 1

o +

a'n+ l l

o+t

. 1
+',;:.|.....

If X stands for the number this continued fraction represents, we can
then write:

1
1

a'+.0.
+

X=a+

a +
1

a.+-;-{-

Now in this expression X, itself, takes the place of as41, 80 applying the
formula for the (n+41th) convergent we have the following:

Puil - X = Xrn + Tn-t
Sns1 Xsn + 841

X2 4+ 801X = 1 X + 1o
8,X2 4 (8pt — W)X — Py = 0.

Cn+l =

This last equation will be called the quadratic equation of the initially
repeating continued fraction, X. Now what can we say about the roots
of this equation? We know that X (the value of the continued fraction)
is positive. Therefore we know the equation has one positive root.
But what do we know about the other root? Since it was indicated
earlier that a particular continued fraction can represent only one
number, the other root must be either negative or equal to X. The
roots of a quadratic equation, ax? 4 bz 4 ¢ = 0, are

b 4+ Vb? - dac -b — Vb - 4ac
% and .

2a
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QUADRATIC EQUATIONS 65

If they are equal, we have
=b+ Vb = dac _ —b — Vb — dac
2a 2a

or +Vb? = dac = —Vb? — 4ac.

This last statement of equality can only be true if b2 — 4ac = 0. From
the quadratic equation for our initially repeating continued fraction,

8aX? + (8a-1 — 72)X — 101 = 0,

a = 8, b= 81— T'ny and ¢ = —Tp-1.

b2 — dac = (8p-1 — 74)? — 4(8,)(=7pu1)
b2 = 4ac = (8p—1 — 74)? + 48,70

Now r,, Iy, 8, and s,._; are positive integers; so (8.-y — 7.)? +
4s,7s-1 cannot possibly equal zero. We have, therefore, proved the

following:

THeoREM €. The quadratic equation for an initially repeating
continued fraction always has one positive and ome negative root.

FINDING THE QUADRATIC EQUATION FOR A CONTINUED FRACTION

We now find the quadratic equation for the following continued

fraction, X.
1

X =3+ -
1+ -
2 + :
44 1
3+ —7—
14—
2+Z+.”
X=3+ =3+ -
1+ 1+
i i
2+ —1_ 2 +
4+:{'_ 4X£-l
3 + = —— -
1+ X 1+t ex52+x

2+ iy +1 X F1




ot b o

66 CONTINUED FRACTIONS
1 1 90X + 2
3t xaxy1 =t oxrerax+r " tmxes -
90X + 2 09X + 2
39X+9+9X+2 _, _48X+11
13X +3 =4 T 13X +3

13X? — 45X — 11 = 0, which is the desired equation.

The quadratic equation for an initially repeating fraction can be
found much more easily by employing a convergent table. When we
consider the fifth term as being X, as above, the continued fraction
has five terms. Therefore X is equal to the fifth convergent for this
continued fraction. Set up a table showing the five convergents (Table
XXIII).

Tame XXIII

n | —=1]{0]1]2] 3] 4 5
an 3[1] 2] 4 X

Ta 0]1[3]4111]48[48X + 11

8n 1{of1]1] 3|13]13X + 3
_T;_ 48X+ll
C“‘E}‘X=13x+3

13X? - 45X —-11 = 0
Compare the structures of the following two equations:
Eq.1. 322+ 42—-2=0 Eq.2. 224+4:—-3=0

Equation 2 is formed by reversing the order of the natural numbers
which appear in the coefficients of Equation 1. The sign of each term
is left unchanged. Now what is the relation between the positive roots
of two quadratic equations constructed in this way? Let us start to
look for an answer by first finding these roots, as follows:

_ —4 4+ VI —1-2(=3)

=44 VI —1-3(=2)

¥ = 2.3 2= 2.2
-2+ V10 -2+ V10
3 2
Now, let 2’ bc the conjugate of .

[
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Consider the following:
1 1
z -2 4 V10
2
-2
-2 + V10
_ -2 (-2-VIO
(-2 + V10) (=2 -~ V10)
—2(—-2 — V10)
4 - 10
_1_-2-+V10
z 3

We have z'= -%. Thus if two quadratic equations are constructed
in the same manner as the two above, and z is a positive root of one

equation, and z is a positive root of the other, then, ' = -l. This is
always true, but no further proof will be given here. 2

At this point it seems reasonable to ask, “What is the relationship
between a given initially repeating continued fraction and the continued
fraction formed by reversing the order of the repeating terms?’ For
example, what is the relationship between the following two continued
fractions?

2 + 1 1 and 5+ ! i
1+ g 1+ :
5+ T 2 4+ i
2 +—7 5+ —
1+54+... 1+34...
Set the first equal to » and the second equal to 2.
y=2+ 11 z=5+ 11
1+— 1+ —
5+ 7 2 + z

Make convergent tables for the convergents of both y and 2.
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6 3

TasLe XXIV TasLe XXV
n [—-1]0]1]2]| 3 4 n |—-1]0]1]2]3 4
an 21| 5 Y an 5/11]2 z !
Tn 0(1]2]{3(17 17y + 3| |7a 0/11516 |17 {1724+ 6 :
8n 110]11]1] 6| 6y + 1}]sn 1{0(1]1(3]32+1
_ 17y +3 o 1246
6y + 1 T 3 +1
62+ y=17y + 3 3224+ 2=172+ 6
6y — 16y — 3 =0 322 — 162 — 6 = 0
Note that these two quadratic equations are constructed in the same
menner as those that we have been discussing Therefore 3y’ = —%. i
Actually y = 8 + v&2 \/82, and z = ' 82. You should check the 1
i

relationship.

We see that if X is any initially repeating continued fraction and Y
is the continued fraction formed by reversing the terms of the repeating
sequence, the following statements are true.

1. X and Y are both greater than 1 because a, in either case is a posi-
tive integer.

1
2. Since Y is greater than 1, % Y is less than 1. Therefore -y is
negative but greater than —1.

1
3. X’ (the conjugate of X) is equal to -7 Therefore X’ is negative
but greater than —1.

As a result of the three statements above, we can say that the follow-
ing inequalities, or properties, exist.

@ X>1
b)-1<X' <0

Any quadratic irrational X which possesses the two properties (a) and
(b) is called a reduced quadratic irrational.

As a consequence of the observations made in this chapter, we now |
state: %

THEOREM 7. Every imitially repeating continued fractzon repre-
sents a reduced quadratic irrational.

SO 1. i i 8 e ot
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Exercise Set 20

Rewrite the following initially repeating continued fractions as
quadratic irrationals by finding the quadratic equation for each con-
tinued fraction and solvirng for the positive root. Then check to see
that this root is a reduced ¢uadratic irrational.

1 1

1
2 + 1

4+

1. 2 +
1+

2.3 +

1

3+-—l—l-
2¥44...

Historical Note

The relationships between a repeating continued fraction and the
continued fraction formed by writing the repeating sequence of terms in
reverse order were studied extensively by the young French mathema-
tician, Evariste Galois (pronounced galwah). He was born in 1811 and
died in 1832. (Note his age.) Galois made important contributions
to the field of mathematics. He was the first to prove that a fifth-
degree equation cannot, in general, be solved by ordinary algebra. He
also showed exactly which equations are solvable. His investigations
are basic to the theory of groups which is extremely important to modern-
day mathematicians.

It is amazing that Galois accomplished all of this before he was twenty-
one years of age. He was killed in a duel when he was twenty years old.
If you would like to read more of the details of the interesting and excit-
ing life of Evariste Galois, you should read Whom the Gods Love by
Leopold Infeld. New York: Whittlesey House, 1948. If you wish to
read a clear explanation of his theory of groups, you may read Galois
and the Theory of Groups by Lillian R. Lieber and Hugh Gray Lieber.
Lancaster Pennsylvania: Science Press Printing Co., 1932.
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CHAPTER 10

INITIALLY REPEATING
CONTINUED FRACTIONS
AND REDUCED
QUADRATIC IRRATIONALS

AN INTERESTING QUESTION

We saw in Chapter 9 that every initially repeating continued fraction
represents a reduced quadratic irrational. Is it true also that the con-
tinued fraction of every reduced quadratic is initially repeating? Let
us begin our investigation by asking: “Does the continued fraction of a
reduced quadratic ever repeat in any manner?” Our next step is to
study the structure of a reduced quadratic.

Let our reduced quadratic irrational be R, and its conjugate be R’.
Now r is a root of some quadratic equation

aR* 4+ bR 4+ ¢c=0
where a, b, and c are integers. Applying the quadratic formula we get

R=—b:!:\/b’—4ac.

2a
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Notice that here —b is an integer, b2 — 4ac is an integer, and 2a is an

*C‘/‘—’, wehave A = —b, B = b? —

4ac, and C = 2a; and this tells us, further, that 4, B, and C are integers.
If the sign before v/B is not +, we can make it so by multiplying both
numerator and denominator of the quadratic irrational by —1. We
now assume R and R’ to be of the form

integer. Since R is of the form 4

RoA+VBE 4 p_A-VB
C C
We now use the rest of the properties of the reduced quadratic R:
R’ <0 means —b—2:2—4ac<0
or A—_C—\/—E <0.
Now multiply both sides of this inequality by C, getting
A-VB <0
oo A <+VB
R>1 means —b+ 2:2 = dac > 1
A +C\/E > 1;
and multiplying by C, we get A+ VvB>C.
But A < VB;

adding VB to each side, we get A + VB < 2VB. And since 4 +
vB > C, we have .
2vVB>A+ VB>C

oo C <2VB.

Recall now that when we constructed term tables for the terms of
the continued fraction for a quadratic irrational, we employed the ex-
pression

B - (A»)2
Cn—l

and found that B — (4.)2 was lways exactly divisible by Cn—1. Perhaps
this can lead us to another relationship between the A, B, and C in our
reduced quadratic.
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We want to discover all that we can about the integers A, B, and C
which are involved in a reduced quadratic. Now since R is reduced,
wehave R > land —1 < R’ < 0; therefore, R — R° > 0,and R + R’
> 0. This means

—b + Vb? — dac _ —b — Vb — 4dac
2a 2a

s 2_
op 2VBT —dac_ o
2a

> 0, b

But keep in mind that it is the relationships between the integers A, B,
and C that we are trying to find. Dividing both sides of the inequality

2 we get
Vb2 — 4ac
2a

VB
< >0

and now, since VB is positive, it follows that C is positive.

—b + Vb? — 4ac —b — Vb2 — 4ac
2a + 2a >0

-2b
2a > 0,
and since A = —b, and C = 2a, we divide both sides of the inequality

by 2 getting

R

>0

s g 3 s

R+ R >0 means

AT i Vet s . . .

=b
-2';>0

or fcl— >0
and since C is positive, this shows that A is positive.

We now have found the following: A is positive, B is positive, and
C is positive. So, if a quadratic irrational is reduced, all signs involved

are +.

g | B — A? _ b — dac — (—b)
2 | c 2a

“ _ b — dac — b?

2a

 —4ac
2a

—2c
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Now —2¢ is an integer, so thkis shows that B — A? is always divisible
by C. And as we pointed out in our previous discussion of this property:
if B — A? is not divisible by C, just multiply both numerator and
denominator of the quadratic irrational by C.

We now have four restrictions upon the integers A, B, and C of a

reduced quadratic irrational i%/ﬁ They are as follows:

(1) A, C, and VB are positive.
(20 A4 < +B

(3) C <2VB.

(4) B — A?is divisible by C.

Now what does this mean? Let us make a reduced quadratic with
B = 5. What are the possibilities for A? By (1) and (2), 4 can only

be 1 or 2. Then what are the possibilities for C? By (3), C can only

be 1, 2, 3, or 4; and by (4), B — A? must be divisible by C. So if 4
is1,Ccanbel, 2, or4;and if A is2, C can only be 1.
The point is that for any value of B there are only a limited number

A—+Ci§ a reduced quadratic.

We need to show now that each u, of the form 4, -lC-' VB which

A+VE
—

of values of A and C that can make

occurs in the expansion of the reduced quadratic is itself a

reduced quadratic. Remember that we showed previously that the
continued fraction for any irrational number never terminates. What
do you think our conclusion will be if each of the u’s is shown to be re-
duced?

We now examine the expansion of the reduced quadratic irrational,
r, into a continued fraction:

1
R=a+ -R—z 1

a, is the integer part of r, which means that R is less than 1.
~ We want now to examine R; to see if it, like R, is a reduced quadratic.
The question of whether R is reduced or not involves the conjugate of R.

We now prove a lemma (a little proof which is instrumental in proving
a more important theorem): Let X be a quadratiic irrational, and X’
be the conjugate of X, and let h be the integer part of X. Then we have
the following: |
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Lmnu If Xisuritten X = h 4+ 5; Y’ and if X' is writlen X' =
h 4+ Z' then, Z is the conjugate of Y.

Proof. Let
X_a-’r\/l; Y_a—\/5
c '’ ' c
and let k be the integer part of X. We can then write the following:
_a+\/b a+\/' a+ Vb - ch
X c h+—o— h+ c
a—ch+ Vb 1
h+ p -h+ p =
a—ch+ Vb
1 1
LA (Y R BN (Y XY
(@ —ch)*—-b (@a—ch)*—-0»
c
‘ 1 (@ —ch) ~ vb
Therefore, X = h + v and Y = @—chr=b"
c
X,_a—\/l;-h_l_a—\/b_h_h_l_a—\/l;—ch_
c c c
1 1
h = h —
+ c + cfa — ch) + V] »
(@ — ch) — Vb (@ —ch)*—b L
l .: N R ‘,»",‘vé B
h (a—ch)+x«'5'
(@a—ch)2-0>
Py , ,
' - 1 = (@~ ch) + v
therefore, X' = h 4 7 and 2 = ch)’ —5

Now by comparison we can see that Z is the conjugate of Y. Thls
completes the proof of the lemma. ”
We now proceed with our investigation of the expansnon of I\} (a
reduced quadratic) into a continued fraction. We can now state
, 1
B=mu+g




1
i
;
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Now solving for Ry':
R'RyY = a\Ry + 1
R'RyY — a\Ry = 1
Ra'(R' - an) = ]

- 1
R' - @
1
a‘ - R'-

R’ < 0 (by definition of a reduced quadratic), so R’ is a negative
namber. But a, is a positive integer; therefore a;, — R’ > 1 and, since

Ry

Ry = -

Ry = _m—iﬁ” we have the result that Ry’ is negative. Thus one of

the requirements for Ry being reduced is satisfied, but we must also
show that Ry’ > —1.

Now Ry’ > =1 because Ry = “a - R and, as we just showed,

a, — R’ > 1. So we can now say that Ry > 0,and =1 < Ry < 0;
which means that R; is reduced. The same argument could now be
applied to R, to show that R; is also reduced, and to R;, ete.
A—"t,—‘/-ﬁ which appears in
the continued fraction of the reduced quadratic R is itself reduced.
Remember that B is the same in each of these expressions, and also
that we discovered earlier that for a given B there are only a limited
number of possible integral values for A and for C. Therefore if we

. A+ VB
carry out the expansion of —
to some pair of values for A and C that has appeared before, and from
that point on the terms will repeat. Thus, we have proved the follow-
ing theorem:

We have now shown that each u, =

far enough we are bound to come

THEOREM 8. The continued fraction for a reduced quadratic ir-
rational will be a repeating continued fraction.

We must now prove that this continued fraction is initially repeating.
The plan here will be to show that if for two terms (a, and a,,) it is true
that a, = aw; then, it will be true that a,-1 = am-1. If this is true,
Gn-2 = am-3; and finally we will have the result that a, is equal to some
following term. If this is true, it follows that the continued fraction
for a reduced quadratic is initially repeating.
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We rlall begin the investigation by concentrating our attention on
two equal terms, a, and a ., which are equal, and by making the following
observations:

Since a, = a,, we can write u, = a, + u—'l:‘- Also according to the lemma
we have u,’ = q, + L

u....."'
Now let us examine closely the second equation. We want to show
that ¥my = Up_). Now Upy = Gy + ;1- and Uy = apy +

'L. Since . = u,, it follows that L - ;l- We see that all we have

left to do is demonstrate that G- ™= Gpy.

Consider the following equations:

“u’-au'l';".l:‘?

u....{

U’
Since all of the u’s are reduced, u,.’ and %.’ both lie between —1 and 0;

1
therefore — —— and — '—l; are both greater than 0, and —l-l— is posi-
Unyt Un -—
U’
tive but less than 1. It then follows from Equation (1) that a, is the
integer part of —;'l—';. We assumed at the beginning that u. = u,.
~+ 1 1

If this is s0 4.’ = u,’, and — ar ™ Tu and since in general a, is

the integer part of — ;-17, we can say that a.., is the integer part of
N

‘ 1 1
L ~ur Then, also, @, is the integer part of " Therefore a,.; =
1 L] L}

@m-1, Which was all we needed to show that if a, = a,. then an_, = 1
-1 Thus ams = au-y, and finally some @ will equal a,.

We have now proved:

THEorREM 9. The continued fraction expansion of any reduced
quadratic irrational is initially repeating.

ERIC

1 Aruitoxt provided by Eic:
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Exercise Set 21

Check the following quadratic irrationals to see which are reduced,
and then find the terms of the reduced quadratics by using a term table
or by the three-step process to see that the terms are initially repeating.

34 V17 1+ V39 -1 4 V17 2 + V12
L —5— 2. —— 3. —5— 4 —F—

A SYMMETRIC SEQUENCE

We now turn our attention to a symmetric sequence. A symmetric
sequence of terms is a sequence that is unchanged if the terms of the se-
quence are wrillen in reverse order. The sequence

@y, s, 3, . . . Qg Gp-1, Gy
is symmetric if
@ = @y, A3 = Gy, G3 = Guy, efcC.
Here are two examples of symmetric sequences:
ExampPLE 1. 1,2, 3,4, 3,2, 1.
ExampLe 2. 7,1,1,9,9,1,1, 7.

Look once more at your term tables for numbers of the form V.
You will notice that in each case the terms form the following pattern:

4, Qs, Gs, * * * as, as, 2ai, as, as, * * * as, as, 2al, as,

The sequence of terms for a pure quadratic irrational start with a;; a,
is followed by a symmetric sequence, which is in turn followed by the
term 2a,. Examples are now given:

The terms of V19are 4,2,1,3,1,2,8,2,1,3,1,2,8,2, ...
The terms of V29 are 5,2, 1,1,2,10,2,1,1, 10,2, ...

Can you explain, at this point, why this should be true? That this will
always be true can be established upon the ideas that have been pre-
sented earlier in this chapter.

Note, first, that no quadratic irrational number of the form Vb is
reduced; but, if we add the integer part of Vb to Vb, we have formed
a reduced quadratic irrational. This will be clear to you if you observe
the following example carefully.

ExamPLE. V5 is not reduced because its conjugate, — V5, is not greater
than —1. But the integer part of V5 is 2, and 2 + V5 is reduced
because 2 + V5 is greater than 1, and 2 — V/5 is negative but greater
than —1.
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We have proved that the continued fraction for a reduced quadratic
is initially repeating. Also recall that the number represented by the
continued fraction formed by reversing the terms of an initially repeat-

1
ing continued fraction, R, is R where R’ is the conjugate of K.
Now let VB be some pure quadratic irrational, then

1
1

“Tat .

+

\/I_J-a,+

1

a, +

2a""izl’+...

Note that a, is the integer part of VB and, as we stated earlier, vB+a
is reduced. Then its continued fraction is initially repeating.

1
1

“+a+”. 1
+

1
an + 1

VB+a=a+a+

Eq.1. VB4 a =2am+

as +

. . 1 1
The conjugate of VB + a1 isa — VB and — Z VB~ VB —or

Now reverse the repeating terms of VB + a1.

2a1+a-.+”.

VB+a =2+ vB — a
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Eq. 2. ‘\/E +a = 2ay + :
vB — a
Observing Equation 1, we see that the continued fraction
a + 1
@+, 1
+ —_—
Gy + '5"2" + .
plays the same part as ‘/—l - in Equation 2; therefore,
1 1
VB - M = a’ + as +
cen 1
+ i
ot om +
1 1
ﬁ—a‘sa”-l-an-n'l' 1 B
Gn_3 + - l
+ -—
a + .-
a + L
a+ . 1
t—7
Gn-1 + '&: + e

Now since these last two continued fractions represent the same number,
they must be equal, which in turn means that their corresponding terms
are equal The repeating sequence of terms is the same when reversed
8o it is a symmetric sequence, and we have

An = Q3, as = QGn_1, ete.

Our conclusion is that the repeating sequence of terms of the con-
tinued fraction of any number of the form Vv is symmetric, except
that instead of the first term being twice the integer part of V/3, it is
exactly the integer part of V.

LAGRANGE'S THEOREM

Still another important theorem can be proved about quadratic ir-
rationals:

LAGRANGE'S THEOREM. The continued fraction for every quadratzc
trrational is a repeating continued fraction.
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Lagrange was a French mathematician who lived from 1736 to 1813.
| He made contributions to many areas of mathematics, particularly to
; the theory of numbers. He was also known as an astronomer.’

' No proof of Lagrange’s theorem will be given here, but you can find
w a proof in almost any book dealing with the theory of numbers. We
| have already proved that the continued fraction for any reduced quad-
ratic will be initially repeating, so all you have do to prove Lagrange’s
theorem is to show that in the expansion of a number of the form

A—+C VB into a continued fraction, one of the expressions of the form

A"—'ZLE which arises in the three-step process will be reduced. Then
from this point on all of these expressions will be reduced quadratics,
and the original quadratic irrational will repeat. Why don’t you try
to prove it?

i

* Fink, Karl. A Brief History of Mathematics. London: The Open Court Publish-
ing Co., 1910. p. 312,

e i ki k. mearile i ol B
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CHAPTER N

OTHER INTERESTING
FACTS ABOUT
CONTINUED FRACTIONS

AN UNANSWERED QUESTION

As you have seen, mathematicians have studied many properties of
quadratic irrational numbers; however, irrationals involving cube roots,
fifth roots, sixth roots, etc., are much more difficult to investigate. For
instance, it is known that the first few terms of the continued fraction
expansion of ¥2 appear as follows:

1
1
1

V2=1+
3+

14

1
1

1+ ——

$+7, ..

5+

1+

and it is not known whether or not there is any limit to how large the
terms will become. ™

¥ Davenport, H. The Higher Arithmetic. London: Hutchinson’s University
Library, 19562. p. 107.
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DISCOVERING A FIBONACCI SEQUENCE

Doesn’t it seem to you that there ought to be something special about
the following continued fraction?
1
14 1 1
1+

0+

14—
1
1+'i'+...

Let us see if we can discover anything interesting about it. We
might as well start by evaluating it. Setting the continued fraction
equal to y, we get

y==0+41 11 or y=0+r+l-_—y.
A
14y
Solving the second expression for y, we have
y+yt=1

v¥+y—1=0
Now applying the quadratic formula for y:

-1+ V1 -=-40)(=1
21

-1+ V5
—

But y is positive, so

-1+ V5
—

Using v5 = 2.236+ and evaluating y, gives:

-1 4 2.236 +
3 .

y = 0.618+.

Now let us place the terms of the continued fraction in a conyvergent
table and see what happens.

'y=

e

A i camnm o Jidin,
it

O i sk, i, "




OTHER INTERESTING FACTS

TasLe XXVI
n |—1)0]i[2|3]4]5/6] 7] 8] 9]10
A Oj1)]1]1f{1j1}] 1) 1{ 1} 1
n 0j1j10]1(1]2|3]5| 8{13]21]|34
8y 1/]0/1(1]2}3[5|8]|13]|21(34]55

Note that the same sequence of numbers appears in both the r-row
and the s-row of the table. Each row contains the sequence 1, 1, 2, 3,
5, 8, 13, 21, ... in which each term is obtained by adding together the
two previous terms. This sequence of numbers is known as the Fibonacci
sequence and the terms in the sequence are called Fibonacci numbers.
Fibonacei was an Italian mathematician of the 13th century.

The Fibonacei sequence occurs repeatedly in nature. For example,
buds form a spiral as they appear on a twig of a tree, or on a bush, or
weed; and the number of buds in a spiral is always one of the numbers
in the Fibonacci sequence.

THE GOLDEN RATIO

Evaluating Ci, we get the following:

Co="T0-3

810 - 55
The number 0.618+4, which is approximately the value of 1+ Vs '; V5
to which each convergent is getting closer, is known as the golden sec-
tion or the golden ratio; and a rectangle in which the ratio of the width
to the length is near the golden ratio is said to be the “most beautiful
rectangle.” It is easy to see that this number has had some influence

in the development of art.

= 0.618+4-.

CONTINUED FRACTIONS AND GEOMETRY

We will now consider a relationship between continued fractions and
geometry. We shall use continued fractions to prove that V2 is ir-
rational. Consider Figure 1.

E
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Given: A square whoie side is unity and with ares drawn as indicated.
AC? = AB? + BC? = 1% + 12 = 2. Therefore AC = V2,

V2

Note: AD and AE are segments of a secant
through the circle with center at C. AB is

tangent to the arc with center at C.

Therefore

from plane geometry we have the following:

AB _ AE,
4D " 4B’
AE = AD + DE = AD + 2BC,
and BC = AB;

BC _AB _ AE _ AD +2BC
AD"AD"AB "~ AB

AB* = AE . AD,or

AD 4+ 2AB AD
—48  ~?t3im

We can see now that this will be a non-

AC _ v2
BC ™~ 1
_AC _ CD + AD
=BC~ BC
-1+ 3¢
AD
1
=14 ——
2 + ‘%—g- (See note.)
=1+ 11
2+ —4p
AD
=1+ 11
2 +

terminating continued fraction and, as we

D noted earlier, a non-terminating continued

2 + AB fraction represents an irrational nurber.

T




APPENDIX A

PROOFS OF
SELECTED THEOREMS

THEOREMS REFERRED TO BUT NOT PROVED IN PREVIOUS CHAPTERS

Proof No. 1

Our objective is to prove the following:

TueoreMm. Every rational number can be expanded into a terminating
continued fraction.

Consider a rational number g Dividing: g = + %.1!1 , where a, is

the largest integer less than or equal to {12 If a, is edual to -g the division
is finished, and the continued fraction is certainly terminating. If a

is not equal to Zl, then 7, is a positive number but less than g. Similarly:

1_ as + 7—.3, and ' = as + T ' In each case the a, is the greatest integer
N L3 Te Te

in the corresponding fraction, and 7.4 is less than r.. The r’s are
positive integers that decrease with each step. Therefore an r (a re-
mainder) of zero will appear since there are only a limited number of
positive integers less than a given integer. When a remainder of zero
is obtained, the continued fraction expansion stops.

B . e

e R
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Proof No. 2

This will be a proof by mathematical induction to show that the
formulas

Tn = Qulay 4 Ta-g and Sy = Ay8y4-1 + 843

are true for all values of n. Here r, and s, are respectively the numerator
and denominator of the nth convergent of the continued fraction of the

rational number -g, and a, is the nth term. We showed in Chapter 2

that these formulas are valid forn = 1,n = 2,n = 3, andn = 4. We
must now show that every time the formulas are true for a particular
value of n they are true for the next value of n.

We assume that the formulas are true for n = m, then we have
Tm ™ Gmme: + Tms Nnd  8p = Gu8py + Sm-s.

This assumption is made in accordance with what is called the induction
hypothesis.

We must now show that
Tmil = Gmi1 *'m + Ty and Smit = Ami18m + Sm-1.
We want to know the value of the following:

Cm+l=§zﬂ=al+ 1

mH as 4+

1

as+”. 1
+ i
am-l+
am +

1
Amyd

Here we have m < 1 terms, but if we consider a,, + a—l- as being only

m41
one term we have the following:
Cm+l = g."'i’l =a 4+ 1 1
mH a; 4
as + .o 1
+ i
Am—1 + -

(- +55)

Using the induction hypothesis we can write

C. = Tm _ Gwl'm-1 + Tm-g
" 8w GuSmet F Smt
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We assumed this formula to be valid for a continued fraction having
m terms. In order to evaluate C .. using this formula, we can consider
am+ al as being only one (the mth) term. According to tis observa-

w1
tion Cms1 has only m terms, and we can evaluate it by substituting

am + 1 for a. as follows:
Amy

(an + ‘—l—' T'm-1 + Tm-3

Q my)

St (an + ;‘L) 8m—1 + 8m-2

m4l
(a"a'ﬂ-‘at‘l) L | + Poes
]
= Multiply both numerator
@m@mir + 1) Em-s 4 8m_g ond denominator of this
A m4d expression by Gam.i.

A mQ m41 + 17w + Ami) Tm-3
Ama my) + 18m1 + Gmy1 Sm-2
- Q@ w41 m—1 + Tmt + CGmyi’m-g
GmOmi18m— + Em-t + Amy18m—s
- an+l(anrn—l <+ rn-!) + Tm
an+l(an8n-l <+ 8n—3) + Sm-t

Note: From the induction hypothesis we have

Anlmet + Tmg = Ty
and
Am8m—t + 8m—g = 8.

Making these substitutions in the last expression for Cm,1, above, we

have Tmil _ AmytTm + rma

Sm4l Amy1Sm + 8m—l’

and by definition rm41 and 8m41 are respectively the numerator and
denominator of the m+1th convergent, C ws1. Therefore,

Tmil = AmyiTm + rma and Smil ™ Omy18,m + 8w

This completes the proof.

Proof No. 3

This will also be a proof by mathematical induction. The object
will be to prove that the equation
Ta8n=1 = Tp-18p = (—1)‘
is true for all values of n.
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We have shown in Chapter 2 that the equation is true forn = 1,n = 2,
and n = 3. Let us assume that the formula is true for some integer
m, with m being greater than 3. Then our induction hypothesis is

Palmel — Tmei8m = (—1)"™,

Now we need to show that  "m418(me141) = T(m=141) 841 = (—1)"H!
or Tmii8m = TmSmy1 = (—1)™H,

Let us work with this relationship (which is not proved) to see if we
can discover a relationship which is simpler and might give us a clue
as to how to proceed with the proof.

TmitlEm — Tmdmil & (—1)™H
Tmtim = Pmdmpt & (—1)(—1)"
—TPmi18m + TmSmit o (—1)™
Tadmtl = Topi8m o (=1)"
From the induction hypothesis, rpsm-1 — rm-18m = (—1)™; 30 make
the equivalent value a substitution for (—1)™:
TwSmil = Tmil8m o TmSmel = T'm18m
Tm(8m-1 = 8mi1) L Sm(Pmat + Tmy1)

Tm ? Tmt + Tyl

8m  Sm-t + 8my1

'm 3__ mal — (auﬂ-lrn + rn—l)
8m  8m-i — (Amy18m + 8m-)

-
E ]
e

Fmal =™ Qmptf'm = Tm-1

Sm Sm=l = Amypl8m — Sm-1
Sm _“n+laﬂ

'-'—'!'-. Finally we have a true statement.
Sm I'm

All we have now found is that: If ru, 18m — TmSa-1 (=1 s

true, then :-;-3 = I At this point we have proved nothing, because

we do not yet know if 7 18m ~ rasms1 = (—1)"+., However, aiu

m 8ﬂ

is true. So if we can prove the statement, ‘‘if -;:1"— = I™ then TmilSm —

m sﬂ

rmdnpt = (—1)"+’) we will have proved that rmii8m — TmSmi1 =
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(—=1)"*! because it is true that g-'! = ;-5 Then if we can retrace our

steps, we will get the desired results:

T'm L)
oo R _’
Sm 8m

L = A4t m
8™ —Gmpim

T'm Tmel = AmiiT'm = Tm=1
8m Smal — CGupi8m — Sm-t'
m Fmel — (an-o-lrn <+ ru—l)

8m Sm=l — (an-o-lsn <+ 'n—-l)’

m Tmel = Tyl

8m Sm-l — 3a+l’

Tu(&u-n - 8..+1) = 8-.(7'-.-1 - Tu+n),
TuBmel = TumBmil = Sl met — Sml'midy
Ta8m—1l = Tme18m = T8yl = Tmi18m.

We now know, by the induction hypothesis, that ru8m-1 — rm-18m =
(=1)". It follows next that, after substituting for r u8m—1 — rm-18m, We
have

Tm8mit — Tmp18m = (—1)",
(1) (rm8msr = Tmp18m) = (1™,
Tmii®m — TmSmyr = (—1)™H,
We now know that whenever the formula
TaSpal = Tp-18y = (—1).

is valid for n = m, it is also valid for n = m 4 1. Therefore, since we
proved in Chapter 2 that this formula is true for n = 3, we know it is
true for n = 4; and if it is true for n = 4, it is true for n = 5, etc. It is,
then, true for all values of n. Of course, since n is just the number of a
term, n will always be a positive integer. Thus the proof is complete.

Procf No. 4
The purpose here is to show that if the equation
22— Pyt =1

is satisfied by the values 21, and y» where 2, and ) are integers, then,
212 4+ P and 24 are also solutions to the equation.

Let Za=224 P and ¥ = 2o
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If 2 and y; are really solutions, we should find that z,* + Py,® = 1.
st — Pyt = (2, + y'P)? — P(2zy)?
= 2, + 252 + §'P? — 4P y?
=n'— 20t + p'P?
23’ - Py,l — (3‘3 - yl’P)’

Now since ;2 — y?P = 1, it follows that (2,2 — y?P)? = 1; therefore,
we have 2,2 — Py = 1. So 2y = ;2 + P and y3 = 2z, are also
solutions to the equation z* 4 Py? = 1.

Proof No. 5

This “proof”’ will consist of one example showing how the repeating
decimal 0.1 23 73 7 - - - can be written as a rational number.

N=  012373737...
10,000N = 12373737
100N =  123737-..

(subtracting) 9,900N = 12250000

1225
N 9900

(a rational number).

[P

r

: EC

Full Tt Provided by ERIC.




APPENDIX B

ANSWERS TO EXERCISES

Set 1;
lo 2+

4. 0 + 1 5.1+

6. 0 +

7.3+
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Set 2:
41 9 225
. 2"2‘ 20 '5'6‘ 30 137'
Set 3;
1 1 1
14 8 44 3 1+ i
4+ -3
145
Set 4;
8 11 30 21 68 157 7 31 193 1382
L3370 25T a0 2359 5 o
Set 5:
Lin [ -1]/0]1]2] 3] 4 2.|n |—-1]0]1] 2] 3] 4
G, 2(3] 1] 2 Ay 1122 2
Tn 01112171 925 Tn Oj1j1 |3 |71
8 11011(3] 411 8y 11011 2] 5]12
3.|n [—-1]l0]1]2T 3T 4 4. |n |-1]0l1]273] 4
Ay 3i11]121] 3 a 213(11] 4
Tn 0111314 |11 {37 Ta 011]2|71]9]43
8 1101111 3]10 8 1/{0]11314]19
5. [n |~1]10[1({2]3] 47 sle. = —-1]011]2 |3 4
a, 0(2 13|11} 4 an 6 13 ]2 3
T 011]0]1 (3| 4719 Tn 0/116 [19 [44]151
8n 1101112171943 8, 110113 |7] 24
7.1n 1-1J0T1 21314 8 [n |-1]0]1T27T3T 4
Qn 0|53 ]2 a, 112 2] 2
Tn Oj1(0|1 3|7 rs | OJ1141 (3 |7]17
8y 1101 (5 [16 |37 8 | 11011 |2 |5112
Note: Your work for Exercises 7 and 8, page 10, has shown you that
. 133 119
the fractions 703 and §& °an be reduced.
Set 6:
n |—-110]1]2]|31] 4 5 6
a, 2{3(1| 3 4 1
Ta 0]1]2]7(9]34145 [179
8y 110113415 64 [ 79
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Note: Your answers up to n = 6 should read: —1, +1, —1, +1, -1,

+1 v.’
Set 7:
1061 984 299
Lo -8 |ooooss| - |oooon |
Set 8;

l.z=10,y = —28 2. z2=50,y= —-12 . z2==],y= -3,

4. No integer solutions. Note that 217 and 105 have a common divisor
which is not a divisor of 6.

8. m = —400, n = 700. 6. m = 106, n = 31.

Set 9

For ¢, any integer, we have the following: :

Lz=10+4+ 11t,y= —28 —31¢. Ift =2,z = 32and y = —90.
2.2=50+454t,y = 12— 13t Ift = 3,2 = 212andy = —51.
$.2-146,y=—-34+17 Ift=1,z=5andy = 14.

5. m= —400+ 19¢,n = 700 — 33.. If t = —2,m = —438and n = 766.
6. m = 1064 253, n = 31 + 74, Ift= —1,m = —147andn = —43.

Set 10:
For k, any integer, we have the following:

L 27,0r 27 + 5k. 2. 95,0r 95 + 12k. 3. —42, or —42 + 0Ok.
4. —144, or —144 + 11k.

Set 11,
13 2 ¥ 3. 32

Set 12,

1 3 22 28 &
Set 13,




04 CONTINUED FRACTIONS
Set 14;
The terms of the continued fractions should appear as follows:
1. 3363,63,6,--- 2.7,2,14,2,14,---
30 6’4, 12’4’ 12"" ‘o 8, l, 7, l, 16, l, 7’ l, 16""
Set 15;
1.2,6,3,6,3,6,3,--- 2.3,2,3,2,3,2,---. .31,222-..
Set 16:
9 4+ V21 5+ V3 9 4+ V15
1.1~ 2 271 V9 g 71 V19
| 8 2 3
i
| Set 17
1. In 1 2|3 4 5| 6
A, JoTefs5 5] 66
Ca 1 11|12 11 1|11 3
an | 6] 1[5 ] 1 [12] 1 ﬁ
2.[n [1]213[4]5]6]7]8 ,4
A, 101 412]4]4(2]4]4 .
Ca|1]6]3[{2!13|[6]1]6
a, |4] 1121 412[1]8]1
3.|n |1]/2]3]4]5]6]|7]8
(A, ]0|8|7] 7/3]3[7]7 .
C. [1]5]2[10[6[10[2]10
a, | 81371 111{ 11711
4. /n |1]2|3[4]|5]/6]7(8
A.|13]5]2|3]13[2]|5][5 .
C.l2]715[6[5]712(7 ’
as [4]1]1]1]1}1]586(1 :
8. [n 112|314 |56
(4, (211331 ]2
Ca|3}14|1]4]31[3
Ge 111{6]1]1]1
6 In 1/2]3[4]5]|6]718 ‘
A, |—-313[3|1]14|41]1]3
C.| 4]3]a[5[1[5[4]3 i
e | O]2[1]1]8]1[1]2 , |
i
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7. Ln 1123 |4]5]6
A, | -3 [7]0([5]5]5
Co |-2|7|8]2|8]2
a, 1—-2]111}85}]2]35

8 In 1 1213 )]4153
{ Ao 8 | 8|8 818
| Ca 16 | 2| 4|8 | 4
Gy 1|8 4124

Set 18:

1.3-8,y=3. 2.3-55,][-12. 303‘35,”’6.
4.2 =640,y = 180. 5.z = 0801; y = 1,820.

Set 19:
1. 23 = 127, yy = 48. 2. 73 = 6,049; ys = 1,320.
8. z, = 2,449; y, = 420. |

Set 19a:
1 23 = 49, y, = 20. 2. 22 = 97, yy = 28,
3. 23 = 51, y3 = 10. 4. 2y = 2,737; y = 444.

Set 20:

14+ V3 20 + V1003
L% 2, =

Set 21: .

1. Reduced; the termsare 3,1,1,3,1,1, - .
2. Not reduced.

3. Not reduced.

4. Reduced; the termsare 1,2,1,2,1, 2, ...,

-
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